scholarly journals Assessment of the efficiency of sewage treatment plants: a comparative study between Nagasandra and Mailasandra sewage treatment plants

Author(s):  
P Ravi Kumar ◽  
Liza Britta Pinto ◽  
RK Somashekar

Bangalore city hosts two Urban Wastewater Treatment Plants (UWTPs) towards the periphery of Vrishabhavathi valley, located in Nellakedaranahalli village of Nagasandra and Mailasandra Village, Karnataka, India. These plants are designed and constructed with an aim to manage wastewater so as to minimize and/or remove organic matter, solids, nutrients, disease-causing organisms and other pollutants, before it reenters a water body. It was revealed from the performance study that efficiency of the two treatment plants was poor with respect to removal of total dissolved solids in contrast to the removal/reduction in other parameters like total suspended solids, BOD and COD. In Mailasandra STP, TDS, TSS, BOD, and COD removal efficiency was 20.01, 94.51, 94.98 and 76.26 % and respectively, while in Nagasandra STP, TDS, TSS, BOD, and COD removal efficiency was 28.45, 99.0, 97.6 and 91.60 % respectively. The order of reduction efficiency was TDS < COD < TSS < BOD and TDS < COD < BOD < TSS respectively in Mailasandra and Nagasandra STPs. Additionally, the problems associated with the operation and maintenance of wastewater treatment plants is discussed. Keywords: Total dissolved solids; Chemical oxygen demand; Biochemical oxygen demand; Aeration tank; Mixed liquor suspended solids; Sludge volume index DOI: 10.3126/kuset.v6i2.4020Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.115-125

2018 ◽  
Vol 28 (3) ◽  
pp. 121-131 ◽  
Author(s):  
Anita Jakubaszek ◽  
Artur Stadnik

Abstract The article analyzes the effectiveness of individual Actibloc wastewater treatment plants (produced by Sotralentz) working in the technology of low-rate activated sludge in the Sequential Batch Reactor (SBR) system. The assessment of the effectiveness of household wastewater treatment plants was made on the basis of pollutants: BOD5, COD, total suspended solids, total nitrogen and total phosphorus. The research objects were four household sewage treatment plants located in: Lubań, Kłębanowice, Stara Rzeka and Kościan. The efficiency of removing pollutants in the examined facilities was in the range of: BOD5 92.2 ÷ 97.2%, COD 82.6 ÷ 89.9%, total suspended solids 90.2 ÷ 96.2%, total nitrogen 50.8 ÷ 83.1%, total phosphorus 46.5 ÷ 73.6%. The treated wastewater met the requirements set out in the Regulation of the Minister of the Environment on the conditions to be met when discharging sewage into water or soil, and on substances particularly harmful to the aquatic environment (Journal of Laws 2014, item 1800) in terms of indicators such as BOD5, COD, total suspended solids and total nitrogen. The effectiveness of phosphorus removal in the studied treatment plants was much lower.


Author(s):  
R. Sandhiya ◽  
K. Sumaiya Begum ◽  
D. Charumathi

<p><strong>Objective: </strong>The objectives of the present study were a) to isolate and screen bacteria for dye removal from synthetic solution b) to optimize various variables such as pH, static/shaking and initial dye concentration on degradation of triphenyl methane dyes namely basic violet 3 and basic green 4 by isolated <em>Staphylococcus aureus</em> c) to analyse enzymes involved in the biodegradation of triphenylmethane dyes d) to treat real leather dyeing wastewater with newly isolated strain of <em>Staphylococcus aureus </em>e) to characterize untreated and treated leather dyeing wastewater f) to study the effects of real and treated effluent on plants and <em>Rhizobium</em>.<strong></strong></p><p><strong>Methods: </strong>Isolation of bacteria from sludge was carried out by spread plate method and the bacteria was identified by morphological and biochemical characterization. The isolated bacterium was screened for dye decolorization potential of triphenylmethane dyes basic violet 3 and basic green 4 The effects of parameters were studied by varying pH (from 3 to 9), temperature (from 15-45 °C), and initial dye concentration (from 10-500 mg/l). The enzyme involved in biodegradation was studied in intracellular extract. Real leather dyeing wastewater was treated with the bacteria and characterized. The treated wastewater was tested on plants and <em>Rhizobium </em>for toxicity. <strong></strong></p><p><strong>Results: </strong>Dye decolorization potential of bacteria <em>Staphylococcus aureus</em> isolated from wastewater for leather dyes basic violet 3 and basic green 4 were evaluated. Dye decolorization using bacteria was found to be dependent on physicochemical parameters (shaking, pH and initial dye concentration). Enzymes NADH-DCIP reductase and MG reductase were found to play dominant role during biodegradation of synthetic dyes. Application oriented studies using growing bacteria in pure cultures were carried out with leather dyeing wastewater collected from DKS prime tanners. Analysis of raw leather dyeing wastewater showed high pollution load in terms of color, Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand whereas the leather dyeing wastewater treated with pure culture of <em>Staphylococcus aureus</em> showed considerable decrease in Total solids, Total suspended solids, Total dissolved solids and Biological oxygen demand values which were within the permissible limits. Phytotoxicity and microbial toxicity studies confirmed the non-toxic nature of treated leather dyeing wastewater. <strong></strong></p><p><strong>Conclusion: </strong>Our study proved that <em>Staphylococcus aureus</em> can serve as a potential remediation agent for the treatment of leather dyeing wastewater.</p>


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2019 ◽  
Vol 6 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Veymar G. Tacias-Pascacio ◽  
Abumalé Cruz-Salomón ◽  
José H. Castañón-González ◽  
Beatriz Torrestiana-Sanchez

Background: Wet coffee processing consists of the removal of the pulp and mucilage of the coffee cherry. This process generates a large amount of acidic wastewater which is very aggressive to the environment because of its high content of recalcitrant organic matter. Therefore, treatment is necessary before discharge to water bodies. Because of this reason, this study aimed to evaluate the organic matter removal efficiency in an Anaerobic Baffled Bioreactor (ABR) coupled to a Microfiltration Membrane (MF) system as a new eco-friendly option in the treatment of wet Coffee Processing Wastewater (CPWW). Methods: Two systems (S1 and S2) were evaluated at Hydraulic Retention Times (HRT) of 59 h and 83 h, respectively. Both systems were operated at mesophilic conditions, at a Transmembrane Pressure (TMP) of 50 kPa during 1800 h. Results: The S2 generated higher organic matter removal efficiency, reaching removal values of turbidity of 98.7%, Chemical Oxygen Demand (COD) of 81%, Total Solids (TS) of 72.6%, Total Suspended Solids (TSS) of 100%, and Total Dissolved Solids (TDS) of 61%, compared with the S1. Conclusion: The S2 represents a new eco-friendly alternative to treat CPWW and reduce its pollutant effect.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhaoqian Jing ◽  
Shiwei Cao

To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF). The results indicated that UV photolysis could not remove much COD (chemical oxygen demand), and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3), COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD) and biodegradability greatly. Proportion of organic compounds with molecular weight (MW) <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.


2017 ◽  
Vol 75 (12) ◽  
pp. 2964-2972 ◽  
Author(s):  
Jean-Marc Choubert ◽  
Samuel Martin Ruel ◽  
Cécile Miege ◽  
Marina Coquery

This paper covers the pitfalls, recommendations and a new methodology for assessing micropollutant removal efficiencies in wastewater treatment plants. The proposed calculation rules take into account the limit of quantification and the analytical and sampling uncertainty of measured concentrations. We identified six cases for which a removal efficiency value is reliable and four other cases where result is highly variable (uncertain) due to very low or unquantified concentrations in effluent or when the influent–effluent concentrations differential is below the measurement uncertainty. The influence of the proposed calculation rules on removal efficiency values was scrutinized using actual results from a research project. The paper arrives at detailed recommendations for limiting the impact of other sources of uncertainty during sampling (sampling strategy, cleaning and field blank), chemical analyses (suspended solids and sludge) and data processing according to the targeted objectives.


2017 ◽  
Vol 35 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Michał Marzec

AbstractThe reliability of removal of selected contaminants in three technological solutions of the household sewage treatment plants was analysed in this paper. The reliability of the sewage treatment plant with activated sludge, sprinkled biological deposit and hybrid reactor (activated sludge and immersed trickling filter) was analyzed. The analysis was performed using the Weibull method for basic indicators of impurities, BOD5, COD and total suspended solids. The technological reliability of the active sludge treatment plant was 70% for BOD5, 87% for COD and 66% for total suspended solids. In the sewage treatment plant with a biological deposit, the reliability values determined were: 30% (BOD5), 60% (COD) and 67% (total suspended solids). In a treatment plant with a hybrid reactor, 30% of the BOD5and COD limit values were exceeded, while 30% of the total suspended solids were exceeded. The reliability levels are significantly lower than the acceptable levels proposed in the literature, which means that the wastewater discharged from the analysed wastewater treatment plants often exceeds the limit values of indicators specified in currently valid in Poland Regulation of the Minister of Environment for object to 2000 population equivalent.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


1995 ◽  
Vol 32 (3) ◽  
pp. 31-40 ◽  
Author(s):  
Yang Yang ◽  
Zhencheng Xu ◽  
Kangping Hu ◽  
Junsan Wang ◽  
Guizhi Wang

In this paper, three years study on a constructed wetland wastewater treatment system at Bainikeng, Shenzhen, is reviewed and summarized. The wetland system under study occupies an area of 8400m2, with a design flow of 3100 m3 per day. The study was conducted to understand removal efficiencies of constructed wetland systems for municipal wastewaters from small or medium scale towns in the sub-tropics. Such parameters as biological oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus in the influent and effluent of the wetland system are examined, and their removal rates are determined. It is shown that the system is very effective in removing organic pollutants and suspended solids and its removal efficiency is much similar to those of the constructed wetlands at Tennessee Valley Authority (TVA) (Choate et al., 1990) while better than those of conventional secondary biochemical treatments.


2016 ◽  
Vol 74 (9) ◽  
pp. 2202-2210
Author(s):  
Jia Liu ◽  
Wei Zuo ◽  
Yu Tian ◽  
Jun Zhang ◽  
Hui Li ◽  
...  

A membrane bioreactor (MBR) coupled with a worm reactor (SSBWR) was designed as SSBWR-MBR for sewage treatment and excess sludge reduction. However, total phosphorus (TP) release caused by worm predation in the SSBWR could increase the effluent TP concentration in the SSBWR-MBR. To decrease the amount of TP excreted, chemical treatment reactor was connected after the SSBWR-MBR to remove the excess phosphorus (P). The effects of chemical treatment at different time intervals on the performance of the SSBWR-MBR were assessed. The results showed that a maximum TP removal efficiency of 21.5 ± 1.0% was achieved in the SSBWR-MBR after chemical treatment. More importantly, a higher sulfate concentration induced by chemical treatment could promote TP release in the SSBWR, which provided further TP removal from the SSBWR-MBR. Additionally, chemical oxygen demand (COD) removal efficiency of the SSBWR-MBR was increased by 1.3% after effective chemical treatment. In the SSBWR-MBR, the chemical treatment had little effects on NH3-N removal and sludge production. Eventually, chemical treatment also alleviated the membrane fouling in the SSBWR-MBR. In this work, the improvement on TP, COD removal and membrane fouling alleviation was achieved in the SSBWR-MBR using additional chemical treatment.


Sign in / Sign up

Export Citation Format

Share Document