scholarly journals Bone Marrow Microenvironment in Multiple Myeloma Progression

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Manier ◽  
A. Sacco ◽  
X. Leleu ◽  
I. M. Ghobrial ◽  
A. M. Roccaro

Substantial advances have been made in understanding the biology of multiple myeloma (MM) through the study of the bone marrow (BM) microenvironment. Indeed, the BM niche appears to play an important role in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM niche is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a noncellular compartment including the extracellular matrix (ECM) and the liquid milieu (cytokines, growth factors, and chemokines). In this paper we discuss how the interaction between the malignant plasma cell and the BM microenvironment allowed myeloma progression through cell homing and the new concept of premetastatic niche.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alessandra Romano ◽  
Concetta Conticello ◽  
Maide Cavalli ◽  
Calogero Vetro ◽  
Alessia La Fauci ◽  
...  

Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3153-3153
Author(s):  
Christopher Richard Marlein ◽  
Rebecca H Horton ◽  
Rachel E Piddock ◽  
Jayna J Mistry ◽  
Charlotte Hellmich ◽  
...  

Abstract Background Multiple myeloma (MM) is malignancy highly reliant on its microenvironment. In this study, we investigated whether mitochondrial transfer occurred between bone marrow stromal cells (BMSC) and malignant plasma cells. We then used our observations as a platform to investigate the mechanisms controlling pro-tumoral mitochondrial transfer with a view to identifying druggable targets. Methods Primary MM cells were obtained from patients' bone marrow after informed consent and under approval from the United Kingdom Health Research Authority. Animal experiments were conducted under approvals from the UK Home Office and the University of East Anglia Animal Welfare and Ethics Review Board. Primary BMSC were also obtained from patient bone marrow, using adherence and characterised using flow cytometry. Mitochondrial transfer was assessed using two methods; a MitoTracker Green based staining of the BMSC (in-vitro), rLV.EF1.AcGFP-Mem9 labelling of the MM plasma membrane with MitoTracker CMXRos staining of the BMSC (in-vitro) and an in vivo MM NSG xenograft model. CD38 expression on MM cells was tested after ATRA treatment, using RT-qPCR and flow cytometry. Mitochondrial transfer levels were assessed when CD38 was over expressed using ATRA or inhibited using lentivirus targeted shRNA. Results We report that mitochondria are transferred from BMSC to MM cells. First, we cultured MM cells on MitoTracker Green labelled BMSC and found increased MitoTracker Green fluorescence in the MM cells. We then transduced MM with rLV.EF1.AcGFP-Mem9 lentivirus and stained BMSC with MitoTracker CMXRos and used wide field microscopy to show MM derived tunnelling nanotubles (TNT) formed between MM cells and BMSC, with red mitochondria located within the GFP-tagged TNT. Next, we engrafted the MM cell lines MM1S and U266 into NSG mouse, after isolation we detected the presence of mouse mitochondrial DNA in the purified MM population. Together, these data show that mitochondria are transferred from BMSC to MM cells. We next analysed OXPHOS levels in MM cells grown on BMSC, using the seahorse extracellular flux assay. We found that the MM cells had increased levels of OXPHOS after culture with BMSC, which was also the case for MM cell lines analysed after isolation from NSG mice, showing the micro-environment of MM can alter the metabolism of the malignant cell. To examine whether the mitochondrial transfer process was controlled by CD38, we knocked down CD38 in MM cells using lentiviral targeted shRNA. We found reduced levels of mitochondrial transfer in CD38KD MM cells, with a consequent reduction of OXPHOS in the malignant cells. Finally, as ATRA has previously been shown to increase CD38 expression in AML, we next quantified CD38 mRNA and surface glycoprotein level on malignant plasma cells with and without ATRA treatment. We found ATRA increased CD38 expression at the mRNA and protein levels and this resulted in an increase in mitochondrial transfer from BMSC to MM cells. Conclusion Here we show that CD38 mediated mitochondrial transfer in the MM micro-environment forms part of the malignant phenotype of multiple myeloma. This finding develops our understanding of the mechanisms which underpin the efficacy of CD38 directed therapy in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3155-3155
Author(s):  
Carlos Fernandez de Larrea ◽  
Tania Diaz ◽  
Alfons Navarro ◽  
Ester Lozano ◽  
Mari-Pau Mena ◽  
...  

Abstract Background: Crosstalk between malignant plasma cells and surrounding cells in the bone marrow (BM), such as mesenchymal stromal cells (MSCs), endothelial cells and immune cells, is crucial for pathogenesis of multiple myeloma (MM) and in asymptomatic monoclonal gammopathies. In these diseases, microRNAs (miRNAs) could be useful as biomarkers for diagnosis, prognosis and evaluation of treatment response. miRNAs can be released to the serum and transferred among MM cells and BM-MSCs as cell-cell communication. Previously, we have showed a serum 14-miRNA signature associated with complete remission (CR) after autologous stem-cell transplantation (ASCT). In this sense, patients in CR with partial recovery of two normal serum miRNA levels, similar to those with monoclonal gammopathy of undetermined significance (MGUS), was associated with better prognosis. The aim of this study was to analyze the miRNAs profile in mesenchymal stromal cells derived from bone marrow of patients with multiple myeloma in different status of the disease, comparing with MGUS controls. Methods: We analyzed samples from 95 patients with MGUS (N=23), MM at diagnosis (N=14), relapsed/refractory MM (N=14), MM in partial response (PR) or very good partial response (VGPR) (N=15), MM in CR (N=24) and healthy donors (N=5). Mononuclear cells from BM samples were cultured in DMEM containing 10% FBS. After a week, non-adherent cells were removed, whereas BM-MSCs were selected by their adherence to the plastic and their phenotype was confirmed by multiparametric flow cytometry. In a first screening phase, we analyzed 670 microRNAs in 20 primary BM-MSC from patients with MGUS (N=4), symptomatic MM (N=8) and MM in CR (N=8). miRNAs differentially expressed were identified according to a supervised analysis using significance analysis of microarrays (SAM) and Student's t-test based on multivariate permutation (with random variance model). miRNAs differentially expressed between groups of patients were validated in the whole cohort of BM-MSC from patients. Paired malignant plasma cells (CD38+) miRNA expression from patients with symptomatic MM as well as miRNA in serum samples paired with BM-MSC samples were also compared. RmiR package was used to identify miRNA targets, cross-correlating the miRNA expression data from the present study with our findings on the gene expression signature (Affymetrix Human Genome U219 array) in 12 BM-MSCs from patients (4 MGUS, 4 symptomatic MM and 4 in CR), based on the predicted targets from TargetScan and miRBase databases. Results: In the screening phase, we identified a miRNA profile of 10 miRNAs (miR-663b, miR-654-3p, miR-206, miR-411*, miR-885-5p, miR-668, miR-638, miR-485-3p, miR-744* and miR-199a) differentially expressed between patients with symptomatic MM and MM in CR (adjusted p-value <0.0001). In the validation phase, miR-485-3p and miR-654-3p resulted differentially expressed in the three groups of patients: MGUS, symptomatic MM and patients in CR (ANOVA test: p=0.0101 and p=0.0228, respectively). The levels of these miRNAs were significantly decreased in patients with MM than in those with MGUS, and these levels seemed to recover when patients achieved CR. These two miRNAs (miR-485-3p and miR-654-3p) were also correlated with all degrees of response in MM and with asymptomatic gammopathies (ANOVA test: p=0.0154 and p=0.0487, respectively). Moreover, paired cross-correlation among these two miRNAs expression with our results in mRNA gene expression profile data showed 324 for miR-485-3p and 265 for miR-654-3p genes (correlation index < -0.8) (Figure 1A and 1B). miR-485-3p and miR-654-3p showed a higher expression in BM-MSC than in MM CD38+ cells, suggesting MSC as cell of origin for these miRNAs. Serum expression of these two miRNAs was concordant with the observed in BM-MSC, with higher in patients in CR and MGUS than in those with symptomatic MM (Figure 1C and 1D). miRNA expression in BM-MSC supernatant as well as the identification of the biological role and validation of the miRNA targets are ongoing. Conclusion: miR-485-3p and miR-654-3p expression in mesenchymal stromal cells from bone marrow in patients with multiple myeloma and asymptomatic monoclonal gammopathies is related to the status of the disease and the response to treatment. These miRNAs are also expressed in serum, resulting in potential biomarkers for disease activity and risk of progression. Disclosures Rosinol: Janssen, Celgene, Amgen, Takeda: Honoraria. Bladé:Janssen: Honoraria.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2688-2693 ◽  
Author(s):  
F Caligaris-Cappio ◽  
L Bergui ◽  
MG Gregoretti ◽  
G Gaidano ◽  
M Gaboli ◽  
...  

We have verified the hypothesis that multiple myeloma (MM) may be disseminated by circulating clonogenic cells that selectively home to the bone marrow (BM) to receive the signal(s) leading to proliferation, terminal differentiation, and production of the osteoclast activating factors. Long-term cultures of stromal cells have been developed from the BM of nine patients with MM. These cells were mostly fibroblast- like elements, interspersed with a proportion of scattered macrophages and rare osteoclasts. BM stromal cells were CD54+, produced high levels of interleukin-6 (IL-6) and measurable amounts of IL-1 beta, and were used as feeder layers for autologous peripheral blood mononuclear cells (PBMC). After 3 weeks of cocultures, monoclonal B lymphocytes and plasma cells, derived from PBMC, developed and the number of osteoclasts significantly increased. Both populations grew tightly adherent to the stromal cell layer and their expansion was matched by a sharp increase of IL-6 and by the appearance of IL-3 in the culture supernatant. These data attribute to BM stromal cells a critical role in supporting the growth of B lymphocytes, plasma cells, and osteoclasts and the in vivo dissemination of MM.


2013 ◽  
Vol 02 (04) ◽  
pp. 290-295 ◽  
Author(s):  
Mohamed Ahmed Ali ◽  
Yasar A Ahmed ◽  
Abubaker Ibrahim

AbstractMultiple myeloma is a malignant plasma cell disorder that accounts for approximately 10% of all hematological cancers. It is characterized by accumulation of clonal plasma cells, predominantly in the bone marrow. The prevalence of type 2 diabetes is increasing; therefore, it is expected that there will be an increase in the diagnosis of multiple myeloma with concomitant diabetes mellitus. The treatment of multiple myeloma and diabetes mellitus is multifaceted. The coexistence of the two conditions in a patient forms a major challenge for physicians.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4808-4808
Author(s):  
Shuang Geng ◽  
Jing Wang ◽  
Mingyi Chen ◽  
Wenming Wang ◽  
Yuhong Pang ◽  
...  

Abstract Extramedullary Plasmacytoma (EMP) is a minor yet devastating metastatic form of Multiple Myeloma (MM), shortening patients' survival from 10 years to 6 months on average. Genetic cause of EMP in MM is yet to be defined. Transcriptome difference between EMP+ patients and EMP- patients is studied here on single cell level by RNA Sequencing (RNA-Seq). We sorted CD38+CD138+ malignant plasma cells from bone marrow and peripheral blood samples by flow cytometry, then picked up single malignant plasma cell and performed single cell RNA-Seq with SmartSeq2 protocol followed by Tn5-based library preparation from bone marrow, peripheral blood and extramedullary tissue of EMP patients. From the single cell RNA-Seq results, in bone marrow we found differential gene expression between EMP+ and EMP- samples, such as CTAG2, STMN1 and RRM2. By comparing circulating malignant plasma cells in PBMC and malignant plasma cell from the sample EMP+ patient, we observed metastatic clone in blood with the same VDJ immunoglobulin heavy chain as in bone marrow. Several genes' expression of these metastatic cells are down-regulated than in bone marrow, such as PAGE2, GTSF1, DICER1. These genes may correlate with egress capability of MM cells into peripheral to become circulating plasma cells (cPCs), and EMP eventually. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Zeinab A. Issa ◽  
Mira S. Zantout ◽  
Sami T. Azar

Multiple myeloma is a malignant plasma cell disorder that accounts for approximately 10% of all hematologic cancers. It is characterized by accumulation of clonal plasma cells, predominantly in the bone marrow. The prevalence of type 2 diabetes is increasing; therefore, it is expected that there will be an increase in the diagnosis of multiple myeloma with concomitant diabetes mellitus. The treatment of multiple myeloma and diabetes mellitus is multifaceted. The coexistence of the two conditions in a patient forms a major challenge for physicians.


2020 ◽  
Vol 21 (2) ◽  
pp. 613 ◽  
Author(s):  
Roberto Ria ◽  
Angelo Vacca

Multiple myeloma is a B-cell lineage cancer in which neoplastic plasma cells expand in the bone marrow and pathophysiological interactions with components of microenvironment influence many biological aspects of the malignant phenotype, including apoptosis, survival, proliferation, and invasion. Despite the therapeutic progress achieved in the last two decades with the introduction of a more effective and safe new class of drugs (i.e., immunomodulators, proteasome inhibitors, monoclonal antibodies), there is improvement in patient survival, and multiple myeloma (MM) remains a non-curable disease. The bone marrow microenvironment is a complex structure composed of cells, extracellular matrix (ECM) proteins, and cytokines, in which tumor plasma cells home and expand. The role of the bone marrow (BM) microenvironment is fundamental during MM disease progression because modification induced by tumor plasma cells is crucial for composing a “permissive” environment that supports MM plasma cells proliferation, migration, survival, and drug resistance. The “activated phenotype” of the microenvironment of multiple myeloma is functional to plasma cell proliferation and spreading and to plasma cell drug resistance. Plasma cell drug resistance induced by bone marrow stromal cells is mediated by stress-managing pathways, autophagy, transcriptional rewiring, and non-coding RNAs dysregulation. These processes represent novel targets for the ever-increasing anti-MM therapeutic armamentarium.


2021 ◽  
Vol 22 (9) ◽  
pp. 4462
Author(s):  
Nikolaos Giannakoulas ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Evangelos Terpos

The development and effectiveness of novel therapies in multiple myeloma have been established in large clinical trials. However, multiple myeloma remains an incurable malignancy despite significant therapeutic advances. Accumulating data have elucidated our understanding of the genetic background of the malignant plasma cells along with the role of the bone marrow microenvironment. Currently, the interaction among myeloma cells and the components of the microenvironment are considered crucial in multiple myeloma pathogenesis. Adhesion molecules, cytokines and the extracellular matrix play a critical role in the interplay among genetically transformed clonal plasma cells and stromal cells, leading to the proliferation, progression and survival of myeloma cells. In this review, we provide an overview of the multifaceted role of the bone marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2506-2506
Author(s):  
A. Corso ◽  
E. Ferretti ◽  
A. Gallì ◽  
A. M. Tenore ◽  
C. Pascutto ◽  
...  

Abstract Multiple myeloma (MM) is a B cell neoplasia characterized by an accumulation of clonal plasma cells (PCs) in the bone marrow (BM). The growth and survival of MM plasma cells is regulated by their network with the microenvironment, mainly with the stromal cells. However, although bone marrow stromal cells have been shown to take part in the pathogenesis of the disease, it is still unknown whether these cells play an active or passive role. Namely, whether normal stromal cells simply supply the demand of MM plasma cells, or, during the course of the disease, they acquire abnormal characteristics becoming pathological. To address this question, we designed an in vitro co-culture model in which PCs isolated by immuno-magnetic separation from MGUS and MM patients are crossed with BM stromal cells (BMSCs) derived from MGUS and MM patients. As a result, four type of co-cultures were obtained: MM-BMSCs/MM-PCs, MM-BMSCs/MGUS-PCs, MGUS-BMSCs/MM-PCs, MGUS-BMSCs/MGUS-PCs. After two days of co-culture in a serum free medium, we evaluated the survival of MM-PCs or MGUS-PCs for each combination. We also quantified by ELISA assays in the supernatants of the same cultures, the level of several growth factors (IL-6, IL-8, VEGF, MIP-1a, MIP-1b, RANTES, MCP-1, TGF-b, SDF-1) to evaluate the possible influence of these cytokines on plasma cells. Multivariate general linear models were applied to compare survival in the different combinations of BMSCs and PCs, also accounting for the various growth factors. MM-BMSCs showed to support the survival of both MM-PCs and MGUS-PCs significantly better than MGUS-BMSCs (p=0.0007). However, in the combination MGUS-PCs/MGUS-BMSCs plasma cells survived statistically better than in that MM-PCs/MGUS-BMSCs (p=0.00003). As regards the cytokines, IL-6, IL-8, VEGF, MIP-1a, MIP-1b, and RANTES did not show to be significantly associated with plasma cell survival in all settings. TGF-B and SDF-1 levels were significantly associated with better survival of both MM-PCs and MGUS-PCs when cultured with MM-BMSCs compared to MGUS-BMSCs (p=0.0001 and p=0.038, respectively), while MCP-1 was significantly associated with reduced survival of MM-PCs and MGUS-PCs in the same setting (p=0.006). In conclusion, these data favours the concept that the behaviour of stromal cells may change during the transition from the condition of MGUS to the overt state of myeloma, evolving from a simple role of a spectator to that of an actor. It also appears that overt MM plasma cells have the highest need for cytokine supply and therefore are more dependent on BMSCs activity.


Sign in / Sign up

Export Citation Format

Share Document