scholarly journals Analysis of ITMS System Impact Mechanism in Beijing Based on FD and Traffic Entropy

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Ailing Huang ◽  
Wei Guan ◽  
Yimei Chang ◽  
Zhen Yang

Although more attention has been attracted to benefit evaluation of Intelligent Transportation Systems (ITS) deployment, how ITS impact the traffic system and make great effects is little considered. As a subsystem of ITS, in this paper, Intelligent Transportation Management System (ITMS) is studied with its impact mechanism on the road traffic system. Firstly, the correlative factors between ITMS and the road traffic system are presented and 3 positive feedback chains are defined. Secondly, we introduce the theory of Fundamental Diagram (FD) and traffic system entropy to demonstrate the correlative relationship between ITMS and feedback chains. The analyzed results show that ITMS, as a negative feedback factor, has damping functions on the coupling relationship of all 3 positive feedback chains. It indicates that with its deployment in Beijing, ITMS has impacted the improvement of efficiency and safety for the road traffic system. Finally, related benefits brought by ITMS are presented corresponding to the correlative factors, and effect standards are identified for evaluating ITMS comprehensive benefits.

Author(s):  
A. H. Nourbakhsh ◽  
M. R. Delavar ◽  
M. Jadidi ◽  
B. Moshiri

Abstract. Intelligent Transportation Systems (ITS) is one of the main components of a smart city. ITS have several purposes including the increase of the safety and comfort of the passengers and the reduction of the road accidents. ITS can enhance safety in three modes before, within and after the collision by preventing accident via assistive system, sensing the collision situation and calculating the time of the collision and providing the emergency response in a timely manner. The main objective of this paper is related to the smart transportation services which can be provided at the time of the collision and after the accident. After the accident, it takes several minutes to hours for the person to contact the emergency department. If an accident takes place for a vehicle in a remote area, this time increases and that may cause the loss of life. In addition, determination of the exact location of the accident is difficult by the emergency centres. That leads to the possibility of erroneous responder act in dispatching the rescue team from the nearest hospital. A new assistive intelligent system is designed in this regard that includes both software and hardware units. Hardware unit is used as an On-Board Unit (OBU), which consists of GPS, GPRS and gyroscope modules. Once OBU detects the accident, a notification system designed and connected to OBU will sent an alarm to the server. The distance to the nearest emergency center is calculated using Dijkstra algorithm. Then the server sends a request for assistance to the nearest emergency centre. The proposed system is developed and tested at local laboratory conditions. The results show that this system can reduce Ambulance Arrival Time (AAT). The preliminary results and architecture of the system have been presented. The inclination angle determined by the proposed system along with the car position identified by the installed GPS sensor assists the crash/accident warning part of the system to send a help request to the nearest road emergency centre. These results verified that the probability of having a remote and smart car crash/accident decision support system using the proposed system has been improved compared to that of the existing systems.


2020 ◽  
Vol 17 (4) ◽  
pp. 1304
Author(s):  
Muhammad Akram Akram Mujahid ◽  
Kamalrulnizam Bin Abu Bakar ◽  
Tasneem S.J Darwish ◽  
Fatima Zuhra ◽  
Muhammad Aamer Ejaz ◽  
...  

Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and pollute the environment. Emergency messages notify the drivers about road accidents and congestions, and how to avoid the dangerous zones. This paper classifies the emergency messages schemes into three categories based on relay node, clustering and infrastructure. The capabilities and limitations of the emergency messages schemes are investigated in terms of dissemination process, message forward techniques, road awareness and performance metrics. Moreover, it highlights VANET-based challenges and open research problems to provide the solutions for a safer, more efficient and sustainable future ITS.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 985-994
Author(s):  
Mustafa Teke ◽  
Fecir Duran

Intelligent transportation systems are advanced applications that inform vehicle drivers about road conditions. The main purpose of the intelligent transportation systems is to reduce either tangible or intangible loss for the drivers by ensuring the safety of passengers and vehicles. In this study, a system is designed and implemented using wireless sensor networks to inform vehicle drivers about the condition of the road surface. Icing has been chosen as the primary focus of the study since it is considered to be a big threat to road and driver’s safety. The temperature at 10 cm depth of the road, air temperature, relative humidity, air pressure and conductivity values are used as the input data for the prediction of icing on the road surface. The data were previously collected on Raspberry Pi which is a single-board computer and the data were read and processed instantly via k-nearest neighbor algorithm. Using these collected data, the road surface condition is classified as icy, dry, wet or salty-wet. The analyzed results for the road surface condition are presented to the drivers via a mobile application in real time. The drivers are alerted visually and audibly as they approach the coordinates on the road where risky conditions are present.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


Author(s):  
Mrs.R.M.Rajeshwari Et. al.

Vehicle Adhoc Network is deployed on the road, where vehicles constitute mobile nodes in which active security and intelligent transportation are important applications of VANET. VANETs are a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred as Intelligent Transportation Networks. However, authentication and privacy of users are still two vital issues in VANETs.  In the traditional mode, the transactional data storage provides no distributed and decentralized security, so that the third party initiates the dishonest behaviors possibly. VANET has  temporary participants , communication between vehicles are short-lived messages. Possible situation might happens , adversary may play as an legitimate user and able to perform malicious activity .To address these challenges this paper proposes timestamp based message between users to  perform secure data transmission and give the negligible probability of the attacker. With the help of Certificate Authority (CA) and the RoadSide Units (RSUs), our proposal attains the confidentiality and  trace the identity of the unauthenticated vehicle in the anonymous announcements as well. Finally, through the theoretical analysis and simulations, our scheme is able to implement a secure VANET framework with accountability and privacy preservation


Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


2016 ◽  
Vol 17 (4) ◽  
pp. 298-306 ◽  
Author(s):  
Wael El-Medany ◽  
Alauddin Al-Omary ◽  
Riyadh Al-Hakim ◽  
Taher Homeed

Abstract This paper presents reconfigurable hardware architecture for smart road traffic system based on Field Programmable Gate Array (FPGA). The design can be reconfigured for different timing of the traffic signals according to the received and collected data read by the different sensors on the road; the design has been described using VHDL (VHSIC Hardware Description Language). The SRTM (Smart Road Traffic Management) System has some more features that help passenger to avoid traffic jamming by sending the collected information through web/mobile applications to find the best road between the start and destination points, which will be displayed on Google maps, at the same time it will also shows the points of traffic jamming on Google maps. SRTM system can also manage emergency vehicles such as ambulance and fire fighter and also can send snapshots and video streaming for different roads and junctions to show the points of traffic jamming. The design has been simulated and tested using ModelSim PE student edition 10.4. Spartan 3 FPGA starter kit from Xilinx has been used for implementing and testing the design in a hardware level.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
M. Meribout

Vehicular networks are the major ingredients of the envisioned Intelligent Transportation Systems (ITS) concept. An important component of ITS which is currently attracting wider research focus is road traffic monitoring. The actual approaches for traffic road monitoring are characterized by longer response times and are also subject to higher processing requirements and possess high deployment costs. In this paper, we propose a completely distributed and scalable mechanism for wireless sensor network-based road traffic monitoring. The approach relies on the distributed and bidirectional exchange of traffic information between the vehicles traversing the routes and a miniature cluster head and takes into consideration both the security and reliability of data communication. In addition, the communication between nodes is collision-free since the underlined data link layer protocol relies on a heuristic time multiplexed-based protocol. The performance analysis shows that the proposed mechanism usually outperforms other algorithms for different traffic densities.


2019 ◽  
Vol 8 (3) ◽  
pp. 5708-5712

Recently there has been growing interest in intelligent transportation system because the road accidents become biggest problems of mankind and the casualties of accident also increases rapidly every year. The casualties are very often witnessed in heavy and light motor vehicles. Moreover, the accidents occur mainly due to carelessness and drowsy feeling of the driver. Intelligent transportation systems use deep learning mechanism to detect drowsiness of the driver and alert the same to driver. It results in reduction of accidents. The driver’s behaviour during drowsiness is detected by three types of approaches. One approach deploys the sensors in steering wheel and accelerator of the vehicle and analyzes the signal sent by the sensors to detect the drowsiness. Second approach focuses on measuring the heart rate, pulse rate and brain signals etc to predict the drowsiness. Third approach uses the facial expression of the driver such as blinking rate of eye, eye closure and yawning etc. The cause for most of the road accidents is driver’s drowsiness. Therefore, in this paper, the behavioural changes of driver is accounted to detect the drowsiness of the driver. Eye movement and yawning are two behavioural changes of driver is considered in this paper. There are many CNN based deep learning architectures such AlexNet, VGGNet, ResNet. In this paper, we propose the drowsiness detection using ResNet because this method works on the principle of passing the output to the next la. The performance of proposed mechanism detects the drowsiness of the driver better than AlexNet and VGGNet.


Sign in / Sign up

Export Citation Format

Share Document