scholarly journals Numerical Simulation of the Effect of Heater Position on the Oxygen Concentration in the CZ Silicon Crystal Growth Process

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ying-Yang Teng ◽  
Jyh-Chen Chen ◽  
Chung-Wei Lu ◽  
Cheng-Chuan Huang ◽  
Wan-Ting Wun ◽  
...  

We perform numerical simulations to analyze the effect of the position of the heater on the thermal and flow fields and the oxygen concentration distribution during the industrial Cz silicon crystal growth process. The amount of oxygen released from the silica crucible to the silicon melt during the growth process can be lowered by adjusting the heater position to decrease the temperature on the crucible wall. During growth of the crystal body, there is a significant decrease in the gradient of the oxygen concentration along the melt-crystal interface due to the stronger Taylor-Proudman vortex, which is generated by the crucible and crystal rotation. There is a significant reduction in the average oxygen concentration at the melt-crystal interface for longer crystal lengths because of the lower wall temperature, smaller contact surface between the crucible wall and the melt and the stronger Taylor-Proudman vortex.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Wenhan Zhao ◽  
Jiancheng Li ◽  
Lijun Liu

The continuous-feeding Czochralski method is a cost-effective method to grow single silicon crystals. An inner crucible is used to prevent the un-melted silicon feedstock from transferring to the melt-crystal interface in this method. A series of global simulations were carried out to investigate the impact of the inner crucible on the oxygen impurity distributions at the melt-crystal interface. The results indicate that, the inner crucible plays a more important role in affecting the O concentration at the melt-crystal interface than the outer crucible. It can prevent the oxygen impurities from being transported from the outer crucible wall effectively. Meanwhile, it also introduces as a new source of oxygen impurity in the melt, likely resulting in a high oxygen concentration zone under the melt-crystal interface. We proposed to enlarge the inner crucible diameter so that the oxygen concentration at the melt-crystal interface can be controlled at low levels.


2014 ◽  
Vol 401 ◽  
pp. 120-123 ◽  
Author(s):  
Kirils Surovovs ◽  
Andris Muiznieks ◽  
Andrejs Sabanskis ◽  
Janis Virbulis

Author(s):  
Jun Liu

The present work is aimed at developing an axial symmetric thermal analysis model for designing the hot-zone of a silicon crystal growth furnace. An analysis model is developed which can be used to predict the approximate pulling rate and power consumption during silicon crystal growth process when utilizing the Czochralski (CZ) method. In addition, the effectiveness of this analysis model is experimentally confirmed.


2021 ◽  
pp. 31-52
Author(s):  
Rabindra Satpathy ◽  
Venkateswarlu Pamuru

Sign in / Sign up

Export Citation Format

Share Document