scholarly journals Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Markus Schmid ◽  
Kerstin Dallmann ◽  
Elodie Bugnicourt ◽  
Dario Cordoni ◽  
Florian Wild ◽  
...  

In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH) barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR) of <2 [cm³(STP)/(m²d bar)] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
E. Bugnicourt ◽  
M. Schmid ◽  
O. Mc. Nerney ◽  
J. Wildner ◽  
L. Smykala ◽  
...  

A biopolymer coating for plastic films was formulated based on whey protein, and its potential to replace current synthetic oxygen barrier layers used in food packaging such as ethylene vinyl alcohol copolymers (EVOH) was tested. The whey-coating application was performed at semi-industrial scale. High barrier to oxygen with transmission rate down to ranges of 1 cm3(STP) m−2d−1bar−1at and 50% relative humidity (r.h.) but interesting humidity barrier down to ranges of 3 g m−2d−1(both normalized to 100 μm thickness) were reached, outperforming most existing biopolymers. Coated films were validated for storing various food products showing that the shelf life and sensory attributes were maintained similar to reference packaging films while complying with food safety regulations. The developed whey coating could be enzymatically removed within 2 hours and is therefore compatible with plastic recycling operations to allow multilayer films to become recyclable by separating the other combined layers. A life cycle assessment was performed showing a significant reduction in the environmental impact of the packaging thanks in particular to the possibility of recycling materials as opposed to incinerating those containing EVOH or polyamide (PA), but due to the use of biosourced raw materials.


2015 ◽  
Vol 30 (2) ◽  
pp. 143-173 ◽  
Author(s):  
Seyed Ahmad Attaran ◽  
Azman Hassan ◽  
Mat Uzir Wahit

Concerns about environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer demand for high-quality food products have led to increased interest in the development of biodegradable packaging materials using annually renewable natural biopolymers. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low barrier properties can be recovered by applying nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to large nanoparticle surface area and their significant aspect ratios. Additionally, natural biopolymer is susceptible to microorganisms, resulting in good biodegradability, which is one of the most promising aspects of its incorporation in packaging materials and industries. The present review article explains the various categories of nanoclay and bio-based polymer-based composites with particular regard to their application as packaging materials. It also gives an overview of the most recent advances and emerging new aspects of nanotechnology for development of composites for environmentally compatible food packaging materials.


2020 ◽  
Vol 11 (1) ◽  
pp. 339-364 ◽  
Author(s):  
Lei Mei ◽  
Qin Wang

Recent advances in food packaging materials largely rely on nanotechnology structuring. Owing to several unique properties of nanostructures that are lacking in their bulk forms, the incorporation of nanostructures into packaging materials has greatly improved the performance and enriched the functionalities of these materials. This review focuses on the functions and applications of widely studied nanostructures for developing novel food packaging materials. Nanostructures that offer antimicrobial activity, enhance mechanical and barrier properties, and monitor food product freshness are discussed and compared. Furthermore, the safety and potential toxicity of nanostructures in food products are evaluated by summarizing the migration activity of nanostructures to different food systems and discussing the metabolism of nanostructures at the cellular level and in animal models.


2021 ◽  
Vol 22 (8) ◽  
pp. 4017
Author(s):  
Anjum Hamid Rather ◽  
Taha Umair Wani ◽  
Rumysa Saleem Khan ◽  
Bishweshwar Pant ◽  
Mira Park ◽  
...  

Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.


Author(s):  
Sudip Ray ◽  
Siew Young Quek ◽  
Allan Easteal ◽  
Xiao Dong Chen

With today's advancement in nanotechnology, Polymer-Clay Nanocomposite has emerged as a novel food packaging material due to its several benefits such as enhanced mechanical, thermal and barrier properties. This article discusses the potential use of these polymer composites as novel food packaging materials with emphasis on preparation, characterization, properties, recent developments and future prospects.


Sign in / Sign up

Export Citation Format

Share Document