scholarly journals CYP2E1 Sensitizes the Liver to LPS- and TNFα-Induced Toxicity via Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated Kinases

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Arthur I. Cederbaum ◽  
Lili Yang ◽  
Xiaodong Wang ◽  
Defeng Wu

The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol elevated production of lipopolysaccharide (LPS) and TNFαand to alcohol induction of CYP2E1. These two pathways are not exclusive of each other; however, interactions between them, have not been extensively evaluated. Increased oxidative stress from induction of CYP2E1 sensitizes hepatocytes to LPS and TNFαtoxicity and oxidants, activation of inducible nitric oxide synthase and p38 and JNK MAP kinases, and mitochondrial dysfunction are downstream mediators of this CYP2E1-LPS/TNFα-potentiated hepatotoxicity. This paper will summarize studies showing potentiated interactions between these two risk factors in promoting liver injury and the mechanisms involved including activation of the mitogen-activated kinase kinase kinase ASK-1. Decreasing either cytosolic or mitochondrial thioredoxin in HepG2 cells expressing CYP2E1 causes loss of cell viability and elevated oxidative stress via an ASK-1/JNK-dependent mechanism. We hypothesize that similar interactions occur as a result of ethanol induction of CYP2E1 and TNFα.

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Alexander Franz ◽  
Laura Joseph ◽  
Constantin Mayer ◽  
Jan-Frieder Harmsen ◽  
Holger Schrumpf ◽  
...  

Osteoarthritis (OA) is the most frequently diagnosed joint disorder worldwide with increasing prevalence and crucial impact on the quality of life of affected patients through chronic pain, decreasing mobility and invalidity. Although some risk factors, such as age, obesity and previous joint injury are well established, the exact pathogenesis of OA on a cellular and molecular level remains less understood. Today, the role of nitrosative and oxidative stress has not been investigated conclusively in the pathogenesis of OA yet. Therefore, the objective of this study was to identify biological substances for oxidative and nitrosative stress, which mirror the degenerative processes in an osteoarthritic joint. 69 patients suffering from a diagnosed knee pain participated in this study. Based on the orthopedic diagnosis, patients were classified into an osteoarthritis group (OAG, n=24) or in one of two control groups (meniscopathy, CG1, n=11; anterior cruciate ligament rupture, CG2, n=34). Independently from the study protocol, all patients underwent an invasive surgical intervention which was used to collect samples from the synovial membrane, synovial fluid and human serum. Synovial biopsies were analyzed histopathologically for synovitis (Krenn-Score) and immunohistochemically for detection of end products of oxidative (8-isoprostane F2α) and nitrosative (3-nitrotyrosine) stress. Additionally, the fluid samples were analyzed for 8-isoprostane F2α and 3-nitrotyrosine by competitive ELISA method. The analyzation of inflammation in synovial biopsies revealed a slight synovitis in all three investigated groups. Detectable concentrations of 3-nitrotyrosine were reported in all three investigated groups without showing any significant differences between the synovial biopsies, fluid or human serum. In contrast, significant increased concentrations of 8-isoprostane F2α were detected in OAG compared to both control groups. Furthermore, our data showed a significant correlation between the histopathological synovitis and oxidative stress in OAG (r=0.728, P<0.01). There were no significant differences between the concentrations of 8-isoprostane F2α in synovial fluid and human serum. The findings of the current study support the hypothesis that oxidative and nitrosative stress are components of the multi-factory pathophysiological formation of OA. It seems reasonable that an inflammatory process in the synovial membrane triggers the generation of oxidative and nitrosative acting substances which can lead to a further degradation of the articular cartilage. Based on correlations between the observed degree of inflammation and investigated biomarkers, especially 8-isoprostane F2α seems to be a novel candidate biomarker for OA. However, due to the finding that also both control groups showed increased concentrations of selected biomarkers, future studies have to validate the diagnostic potential of these biomarkers in OA and in related conditions of the knee joint.


2007 ◽  
Vol 293 (5) ◽  
pp. F1691-F1698 ◽  
Author(s):  
Cristino Cruz ◽  
Ricardo Correa-Rotter ◽  
Dolores Javier Sánchez-González ◽  
Rogelio Hernández-Pando ◽  
Perla D. Maldonado ◽  
...  

Progressive renal damage and hypertension are associated with oxidative and nitrosative stress. On the other hand, S-allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract (AG), has antioxidant properties. The effects of SAC and AG on blood pressure, renal damage, and oxidative and nitrosative stress were studied in five-sixths nephrectomized rats treated with SAC (200 mg/kg ip) and AG (1.2 ml/kg ip) every other day for 30 days. Proteinuria and serum creatinine and blood urea nitrogen concentrations were measured on days 0, 5, 10, 15, and 30, and systolic blood pressure was recorded on days 0, 15, and 30. The degree of glomerulosclerosis and tubulointerstitial damage, the immunostaining for inducible nitric oxide synthase, 3-nitrotyrosine, poly(ADP-ribose), and the subunits of NADPH oxidase p22phox and gp91phox, and the activity of SOD were determined on day 30. SAC and AG reduced hypertension, renal damage, and the abundance of inducible nitric oxide synthase, 3-nitrotyrosine, poly(ADP-ribose), p22phox, and gp91phox and increased SOD activity. Our data suggest that the antihypertensive and renoprotective effects of SAC and AG are associated with their antioxidant properties and that they may be used to ameliorate hypertension and delay the progression of renal damage.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
M. Neri ◽  
I. Riezzo ◽  
C. Pomara ◽  
S. Schiavone ◽  
E. Turillazzi

Background. Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients.Aim. In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis.Conclusions. Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.


2021 ◽  
Author(s):  
Yulia Abalenikhina ◽  
◽  
Elena A. Sudakova ◽  
Pelageya Erokhina ◽  
Aleksey Shchulkin ◽  
...  

The article discusses the new role of pregnane X receptor (PXR) under conditions of oxidative and nitrosative stress. The results showed that the effect of hydrogen peroxide and S-nitrosoglu-tathione in high concentrations on Caco-2 cells leads to a decrease in cell viability, which is accompanied by an increase in the amount of PXR. These changes are offset by the addition of ketoconazole (inhibitor of PXR) to the medium.


2004 ◽  
Vol 61 (10) ◽  
pp. 1167-1175 ◽  
Author(s):  
D. Miljkovic ◽  
O. Vuckovic ◽  
L. Harhaji ◽  
Z. Nikolic ◽  
V. Trajkovic ◽  
...  

2019 ◽  
Vol 97 (12) ◽  
pp. 1193-1203
Author(s):  
Zumrut Kocak ◽  
Meryem Temiz-Resitoglu ◽  
Demet Sinem Guden ◽  
Ozden Vezir ◽  
Nehir Sucu ◽  
...  

Mammalian target of rapamycin (mTOR) has been recognized with potential immunomodulatory properties playing an important role in various physiopathological processes including ischemia–reperfusion (I/R) injury. I/R injury stimulate reactive oxygen and nitrogen species by activating nicotinamide adenine dinucleotide phosphate oxidase and inducible nitric oxide synthase, respectively. Controversial results have been obtained in different I/R models following localized I/R; however, the precise role of the mTOR signaling pathway remains undefined. The objective of the current study was to evaluate the role of the mTOR in oxidative–nitrosative stress and inflammation in hindlimb I/R-induced injury in target and remote organ injuries. In rats subjected to I/R, an increased expression of ribosomal protein S6 (rpS6), inhibitor κB (IκB)-α, nuclear factor-κB (NF-κB) p65, inducible nitric oxide synthase, cyclooxygenase 2, gp91phox, and levels of tumor necrosis factor α, nitrite, nitrotyrosine, malondialdehyde and the activities of myeloperoxidase and catalase in the tissues and (or) sera were detected. Treatment with rapamycin, a selective inhibitor of mTOR, reversed all the I/R-induced changes as manifested by its anti-inflammatory and antioxidant effects in kidney and gastrocnemius muscle of rats. Collectively, these findings suggest that rapamycin protects against I/R-induced oxidative–nitrosative stress and inflammation leading to organ injuries via suppression of mTOR/IκB-α/NF-κB signaling pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Azza A. K. El-Sheikh ◽  
Mohamed A. Morsy ◽  
Ahlam M. Abdalla ◽  
Azza H. Hamouda ◽  
Ibrahim A. Alhaider

To investigate mechanisms by which thymoquinone (TQ) can prevent methotrexate- (MTX-) induced hepatorenal toxicity, TQ (10 mg/kg) was administered orally for 10 days. In independent rat groups, MTX hepatorenal toxicity was induced via 20 mg/kg i.p. at the end of day 3 of experiment, with or without TQ. MTX caused deterioration in kidney and liver function, namely, blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase. MTX also caused distortion in renal and hepatic histology, with significant oxidative stress, manifested by decrease in reduced glutathione and catalase, as well as increase in malondialdehyde levels. In addition, MTX caused nitrosative stress manifested by increased nitric oxide, with upregulation of inducible nitric oxide synthase. Furthermore, MTX caused hepatorenal inflammatory effects as shown by increased tumor necrosis factor-α, besides upregulation of necrosis factor-κB and cyclooxygenase-2 expressions. MTX also caused apoptotic effect, as it upregulated caspase 3 in liver and kidney. Using TQ concurrently with MTX restored kidney and liver functions, as well as their normal histology. TQ also reversed oxidative and nitrosative stress, as well as inflammatory and apoptotic signs caused by MTX alone. Thus, TQ may be beneficial adjuvant that confers hepatorenal protection to MTX toxicity via antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document