scholarly journals Oxidative-Nitrosative Stress and Myocardial Dysfunctions in Sepsis: Evidence from the Literature and Postmortem Observations

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
M. Neri ◽  
I. Riezzo ◽  
C. Pomara ◽  
S. Schiavone ◽  
E. Turillazzi

Background. Myocardial depression in sepsis is common, and it is associated with higher mortality. In recent years, the hypothesis that the myocardial dysfunction during sepsis could be mediated by ischemia related to decreased coronary blood flow waned and a complex mechanism was invoked to explain cardiac dysfunction in sepsis. Oxidative stress unbalance is thought to play a critical role in the pathogenesis of cardiac impairment in septic patients.Aim. In this paper, we review the current literature regarding the pathophysiology of cardiac dysfunction in sepsis, focusing on the possible role of oxidative-nitrosative stress unbalance and mitochondria dysfunction. We discuss these mechanisms within the broad scenario of cardiac involvement in sepsis.Conclusions. Findings from the current literature broaden our understanding of the role of oxidative and nitrosative stress unbalance in the pathophysiology of cardiac dysfunction in sepsis, thus contributing to the establishment of a relationship between these settings and the occurrence of oxidative stress. The complex pathogenesis of septic cardiac failure may explain why, despite the therapeutic strategies, sepsis remains a big clinical challenge for effectively managing the disease to minimize mortality, leading to consideration of the potential therapeutic effects of antioxidant agents.

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Alexander Franz ◽  
Laura Joseph ◽  
Constantin Mayer ◽  
Jan-Frieder Harmsen ◽  
Holger Schrumpf ◽  
...  

Osteoarthritis (OA) is the most frequently diagnosed joint disorder worldwide with increasing prevalence and crucial impact on the quality of life of affected patients through chronic pain, decreasing mobility and invalidity. Although some risk factors, such as age, obesity and previous joint injury are well established, the exact pathogenesis of OA on a cellular and molecular level remains less understood. Today, the role of nitrosative and oxidative stress has not been investigated conclusively in the pathogenesis of OA yet. Therefore, the objective of this study was to identify biological substances for oxidative and nitrosative stress, which mirror the degenerative processes in an osteoarthritic joint. 69 patients suffering from a diagnosed knee pain participated in this study. Based on the orthopedic diagnosis, patients were classified into an osteoarthritis group (OAG, n=24) or in one of two control groups (meniscopathy, CG1, n=11; anterior cruciate ligament rupture, CG2, n=34). Independently from the study protocol, all patients underwent an invasive surgical intervention which was used to collect samples from the synovial membrane, synovial fluid and human serum. Synovial biopsies were analyzed histopathologically for synovitis (Krenn-Score) and immunohistochemically for detection of end products of oxidative (8-isoprostane F2α) and nitrosative (3-nitrotyrosine) stress. Additionally, the fluid samples were analyzed for 8-isoprostane F2α and 3-nitrotyrosine by competitive ELISA method. The analyzation of inflammation in synovial biopsies revealed a slight synovitis in all three investigated groups. Detectable concentrations of 3-nitrotyrosine were reported in all three investigated groups without showing any significant differences between the synovial biopsies, fluid or human serum. In contrast, significant increased concentrations of 8-isoprostane F2α were detected in OAG compared to both control groups. Furthermore, our data showed a significant correlation between the histopathological synovitis and oxidative stress in OAG (r=0.728, P<0.01). There were no significant differences between the concentrations of 8-isoprostane F2α in synovial fluid and human serum. The findings of the current study support the hypothesis that oxidative and nitrosative stress are components of the multi-factory pathophysiological formation of OA. It seems reasonable that an inflammatory process in the synovial membrane triggers the generation of oxidative and nitrosative acting substances which can lead to a further degradation of the articular cartilage. Based on correlations between the observed degree of inflammation and investigated biomarkers, especially 8-isoprostane F2α seems to be a novel candidate biomarker for OA. However, due to the finding that also both control groups showed increased concentrations of selected biomarkers, future studies have to validate the diagnostic potential of these biomarkers in OA and in related conditions of the knee joint.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 265 ◽  
Author(s):  
Asha Rizor ◽  
Edward Pajarillo ◽  
James Johnson ◽  
Michael Aschner ◽  
Eunsook Lee

Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide; it is characterized by dopaminergic neurodegeneration in the substantia nigra pars compacta, but its etiology is not fully understood. Astrocytes, a class of glial cells in the central nervous system (CNS), provide critical structural and metabolic support to neurons, but growing evidence reveals that astrocytic oxidative and nitrosative stress contributes to PD pathogenesis. As astrocytes play a critical role in the production of antioxidants and the detoxification of reactive oxygen and nitrogen species (ROS/RNS), astrocytic oxidative/nitrosative stress has emerged as a critical mediator of the etiology of PD. Cellular stress and inflammation induce reactive astrogliosis, which initiates the production of astrocytic ROS/RNS and may lead to oxidative/nitrosative stress and PD pathogenesis. Although the cause of aberrant reactive astrogliosis is unknown, gene mutations and environmental toxicants may also contribute to astrocytic oxidative/nitrosative stress. In this review, we briefly discuss the physiological functions of astrocytes and the role of astrocytic oxidative/nitrosative stress in PD pathogenesis. Additionally, we examine the impact of PD-related genes such as α-synuclein, protein deglycase DJ-1( DJ-1), Parkin, and PTEN-induced kinase 1 (PINK1) on astrocytic function, and highlight the impact of environmental toxicants, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, manganese, and paraquat, on astrocytic oxidative/nitrosative stress in experimental models.


2021 ◽  
Author(s):  
Yulia Abalenikhina ◽  
◽  
Elena A. Sudakova ◽  
Pelageya Erokhina ◽  
Aleksey Shchulkin ◽  
...  

The article discusses the new role of pregnane X receptor (PXR) under conditions of oxidative and nitrosative stress. The results showed that the effect of hydrogen peroxide and S-nitrosoglu-tathione in high concentrations on Caco-2 cells leads to a decrease in cell viability, which is accompanied by an increase in the amount of PXR. These changes are offset by the addition of ketoconazole (inhibitor of PXR) to the medium.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander V. Maksimenko

Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT) conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously) but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction withO2∙-superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO.


2020 ◽  
Vol 21 (7) ◽  
pp. 2413 ◽  
Author(s):  
Naranjan S. Dhalla ◽  
Anureet K. Shah ◽  
Paramjit S. Tappia

Although the presence of cardiac dysfunction and cardiomyopathy in chronic diabetes has been recognized, the pathophysiology of diabetes-induced metabolic and subcellular changes as well as the therapeutic approaches for the prevention of diabetic cardiomyopathy are not fully understood. Cardiac dysfunction in chronic diabetes has been shown to be associated with Ca2+-handling abnormalities, increase in the availability of intracellular free Ca2+ and impaired sensitivity of myofibrils to Ca2+. Metabolic derangements, including depressed high-energy phosphate stores due to insulin deficiency or insulin resistance, as well as hormone imbalance and ultrastructural alterations, are also known to occur in the diabetic heart. It is pointed out that the activation of the sympathetic nervous system and renin–angiotensin system generates oxidative stress, which produces defects in subcellular organelles including sarcolemma, sarcoplasmic reticulum and myofibrils. Such subcellular remodeling plays a critical role in the pathogenesis of diabetic cardiomyopathy. In fact, blockade of the effects of neurohormonal systems has been observed to attenuate oxidative stress and occurrence of subcellular remodeling as well as metabolic abnormalities in the diabetic heart. This review is intended to describe some of the subcellular and metabolic changes that result in cardiac dysfunction in chronic diabetes. In addition, the therapeutic values of some pharmacological, metabolic and antioxidant interventions will be discussed. It is proposed that a combination therapy employing some metabolic agents or antioxidants with insulin may constitute an efficacious approach for the prevention of diabetic cardiomyopathy.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Arthur I. Cederbaum ◽  
Lili Yang ◽  
Xiaodong Wang ◽  
Defeng Wu

The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol elevated production of lipopolysaccharide (LPS) and TNFαand to alcohol induction of CYP2E1. These two pathways are not exclusive of each other; however, interactions between them, have not been extensively evaluated. Increased oxidative stress from induction of CYP2E1 sensitizes hepatocytes to LPS and TNFαtoxicity and oxidants, activation of inducible nitric oxide synthase and p38 and JNK MAP kinases, and mitochondrial dysfunction are downstream mediators of this CYP2E1-LPS/TNFα-potentiated hepatotoxicity. This paper will summarize studies showing potentiated interactions between these two risk factors in promoting liver injury and the mechanisms involved including activation of the mitogen-activated kinase kinase kinase ASK-1. Decreasing either cytosolic or mitochondrial thioredoxin in HepG2 cells expressing CYP2E1 causes loss of cell viability and elevated oxidative stress via an ASK-1/JNK-dependent mechanism. We hypothesize that similar interactions occur as a result of ethanol induction of CYP2E1 and TNFα.


Cephalalgia ◽  
2015 ◽  
Vol 35 (10) ◽  
pp. 931-937 ◽  
Author(s):  
Monica Neri ◽  
Alessandra Frustaci ◽  
Mirta Milic ◽  
Vanessa Valdiglesias ◽  
Massimo Fini ◽  
...  

Background Oxidative and nitrosative stress are considered key events in the still unclear pathophysiology of migraine. Methods Studies comparing the level of biomarkers related to nitric oxide (NO) pathway/oxidative stress in the blood/urine of migraineurs vs. unaffected controls were extracted from the PubMed database. Summary estimates of mean ratios (MR) were carried out whenever a minimum of three papers were available. Nineteen studies were included in the meta-analyses, accounting for more than 1000 patients and controls, and compared with existing literature. Results Most studies measuring superoxide dismutase (SOD) showed lower activity in cases, although the meta-analysis in erythrocytes gave null results. On the contrary, plasma levels of thiobarbituric acid reactive substances (TBARS), an aspecific biomarker of oxidative damage, showed a meta-MR of 2.20 (95% CI: 1.65–2.93). As for NOs, no significant results were found in plasma, serum and urine. However, higher levels were shown during attacks, in patients with aura, and an effect of diet was found. The analysis of glutathione precursor homocysteine and asymmetric dimethylarginine (ADMA), an NO synthase inhibitor, gave inconclusive results. Conclusions The role of the oxidative pathway in migraine is still uncertain. Interesting evidence emerged for TBARS and SOD, and concerning the possible role of diet in the control of NOx levels.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


Sign in / Sign up

Export Citation Format

Share Document