scholarly journals The Permanence and Extinction of the Single Species with Contraception Control and Feedback Controls

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Qiuying Li ◽  
Fengqin Zhang ◽  
Xiaomei Feng ◽  
Wenjuan Wang ◽  
Kai Wang

Population control has become a major problem in many wildlife species. Sterility control through contraception has been proposed as a method for reducing population size. In this paper, the single species with sterility control and feedback controls is considered. Sufficient conditions are obtained for the permanence and extinction of the system. The results show that the feedback controls do not influence the permanence of the species.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanhong Zhi ◽  
Zunling Ding ◽  
Yongkun Li

We present a model with feedback controls based on ecology theory, which effectively describes the competition and cooperation of enterprise cluster in real economic environments. Applying the comparison theorem of dynamic equations on time scales and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the existence of uniformly asymptotically stable almost periodic solution of the system are obtained.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750022 ◽  
Author(s):  
Qimin Zhang ◽  
Xinjing Zhang ◽  
Hongfu Yang

In this paper, a class of stochastic Lotka–Volterra system with feedback controls is considered. The purpose is to establish some criteria to ensure the system is globally dissipative in the mean square. By constructing suitable Lyapunov functions as well as combining with Jensen inequality and It[Formula: see text] formula, the sufficient conditions are established and they are expressed in terms of the feasibility to a couple linear matrix inequalities (LMIs). Finally, the main results are illustrated by examples.


Author(s):  
Garrett Hardin

Were we able to talk with other animals, it is extremely unlikely that we should hear them debating the problem of population control. They don't need to debate: nature solves the problem for them. And what is the problem? Simply this: to keep a successful species from being too successful. To keep it from eating itself out of house and home. And the solution? Simply predation and disease, which play the role that human beings might label "providence." As far as the written record reveals, no one recognized the self-elimination of a species as a potential problem for animals until the danger had become suspected among human beings. One of the earliest descriptions of this population problem for other animals was given by the Reverend Joseph Townsend, an English geologist. His key contribution was published in 1786, twelve years before Malthus's celebrated essay (Box 25-1). Townsend was dependent upon others for the outline of his story, and there is some question as to whether the details are historically correct. But the thrust of the story must be true: a single species (goats, in this case) exploiting a resource (plants) cannot, by itself, maintain a stable equilibrium at a comfortable level of living. The animals will either die after eating up all the food, or their numbers will fluctuate painfully. (Details differ, depending on the species and the environment.) Stability and prosperity require that the gift of exponential growth be opposed by some sort of countervailing force (predatory dogs, in Townsend's example). However deplorable predators may be for individuals who happen to be captured and eaten, for the prey population as a whole predators are (over time) a blessing. With millions of different species of animals there are many different particular explanations of how they manage to persist for thousands or millions of years. The species we are most interested in is, of course, Homo sapiens. A meditation on Townsend's account led to a challenging set of questions. "If all this great earth be no more than the Island of Juan Fernandes, and if we are the goats, how can we live "the good life" without a functional equivalent of the dogs? Must we create and sustain our own dogs? Can we do so, consciously? And if we can, what manner of beast will they be?"


1986 ◽  
Vol 23 (02) ◽  
pp. 504-508
Author(s):  
N. C. Weber

The Wright–Fisher model with varying population size is examined in the case where the selective advantage varies from generation to generation. Models are considered where the selective advantage is not always in favour of a particular genotype. Sufficient conditions in terms of the selection coefficients and the population growth are given to ensure ultimate homozygosity.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Tursuneli Niyaz ◽  
Ahmadjan Muhammadhaji

This paper studies a class of periodicnspecies cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.


2020 ◽  
Vol 13 (04) ◽  
pp. 2050031
Author(s):  
Jiandong Zhao ◽  
Tonghua Zhang

Under the assumption that the growth of the population satisfies the generalized logistic equation, a new single species model in polluted environment is proposed in this work. Sufficient conditions for permanence and extinction of the species in the model are given respectively. It is shown that our model and the results are improvements of those in He and Wang [Appl. Math. Model. 31 (2007) 2227–2238].


1991 ◽  
Vol 28 (03) ◽  
pp. 512-519 ◽  
Author(s):  
Fima C. Klebaner

Sufficient conditions for survival and extinction of multitype population-size-dependent branching processes in discrete time are obtained. Growth rates are determined on the set of divergence to infinity. The limiting distribution of a properly normalized process can be generalized gamma, normal or degenerate.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yali Shen ◽  
Fengqin Zhang ◽  
Kai Wang

We study the permanence of a classofsingle species system with distributed time delay and feedback controls. General criteria on permanence are established in this paper. A very important fact is found in our results; that is, the feedback control is harmless to the permanence of species.


Sign in / Sign up

Export Citation Format

Share Document