scholarly journals Characterization of Type I and IV Collagens by Raman Microspectroscopy: Identification of Spectral Markers of the Dermo-Epidermal Junction

2012 ◽  
Vol 27 ◽  
pp. 421-427 ◽  
Author(s):  
T. T. Nguyen ◽  
C. Gobinet ◽  
J. Feru ◽  
S. Brassart -Pasco ◽  
M. Manfait ◽  
...  

Type I and IV collagens are important constituents of the skin. Type I collagen is found in all dermal layers in high proportion, while type IV collagen is localized in the basement membrane of the dermo-epidermal junction (DEJ). These proteins are strongly altered during aging or cancer progression. Although they possess amino acid compositions which, are close, they present also important structural differences inducing specific physicochemical properties. Raman spectroscopy is based on a nondestructive interaction of the light with the matter. This technique permits to probe the intrinsic molecular composition of the samples without staining or particular preparation. The aim of our research is to study the correlation between the molecular conformations of type I and IV collagens and their Raman features. We showed that signals specific of each protein can be revealed and that they translate structural differences between the two collagens. From this collagens spectral characterization, the analysis of skin sections also permitted to identify spectral markers of dermis, epidermis, and epidermis/dermis interface. These preliminary results represent basic data for further studies, particularly to probe skin molecular alterations induced by chronologic aging.

2008 ◽  
Vol 2 (1) ◽  
pp. 133-137 ◽  
Author(s):  
Guoping Chen ◽  
Naoki Kawazoe ◽  
Tetsuya Tateishi

The effects of extracellular matrix (ECM) proteins and cationic polymers on the adhesion and proliferation of rat islet cells, RIN-5F cells, were investigated. ECM proteins of laminin, fibronectin, vitronectin, type I collagen, type II collagen, and type IV collagen, and cationic polyelectrolytes of poly(L-lysine) and poly(allylamine) were coated on the wells of polystyrene cell culture plates. Their effects on the adhesion and proliferation of RIN-5F in serum-free and serum mediums were compared. The cell number on the laminin-coated surface was the highest among the coated surfaces. Laminin promoted cell adhesion more strongly than did the other ECM proteins and cationic polyelectrolytes. Vitronectin, type IV collagen, and poly(L-lysine) showed moderate effects, but type I collagen and type II collagen did not have any effects on adhesion and proliferation compared with the uncoated polystyrene cell culture plate. Fibronectin promoted cell adhesion but not cell proliferation. Cationic poly(allylamine) had an inhibitory effect in serum-free medium and for longterm culture in serum medium. The ECM proteins of laminin, vitronectin, and type IV collagen, and cationic poly(Llysine) will be useful for the surface modification and construction of biomaterials and scaffolds for islet cell culture and tissue engineering.


1990 ◽  
Vol 96 (1) ◽  
pp. 159-169
Author(s):  
A.E. Canfield ◽  
T.D. Allen ◽  
M.E. Grant ◽  
S.L. Schor ◽  
A.M. Schor

Bovine retinal pericytes plated on a two-dimensional substratum display a characteristic stellate morphology. In post-confluent cultures these cells aggregate spontaneously to form multicellular nodules. The same cells plated within a three-dimensional collagen matrix display an elongated sprouting morphology. Sprouting pericytes may be embedded within a gel either as individual cells or as multicellular aggregates. We have compared the nature of the matrix proteins synthesised by pericytes displaying these different phenotypes. Stellate pericytes cultured on plastic dishes synthesised predominantly type I collagen, some type III collagen and only traces of type IV collagen. The same collagen types were secreted when nodules had formed in postconfluent cultures on plastic, and by sprouting cells plated as single cells within the collagen gel. By contrast, sprouting pericytes plated as aggregates within the collagen gel secreted increased levels of type IV collagen and reduced amounts of type I collagen. Fibronectin was synthesized by pericytes under all experimental conditions examined; thrombospondin was produced in relatively large amounts by cells grown on plastic dishes, whereas only trace amounts could be detected in the medium when the cells were cultured within a collagen gel matrix. Transmission electron microscopy revealed that pericyte aggregates within a collagen gel contained cells in close apposition surrounded by a dense extracellular matrix. In contrast, cells in the centre of a nodule on plastic appeared to be separated from each other by loose extracellular material. These results suggest that the morphological and biosynthetic phenotypes of retinal pericytes are modulated by cell-matrix and/or cell-cell interactions.


1990 ◽  
Vol 10 (3) ◽  
pp. 1239-1243 ◽  
Author(s):  
J M Caron

Transcriptional activity of the albumin gene was induced in primary cultures of hepatocytes by adding dilute concentrations of basement membrane-like proteins derived from the EHS mouse sarcoma tumor to established type I collagen cultures. By immunofluorescence microscopy with antialbumin antibody, the population of cells responded uniformly to dilute EHS. Of the three major components of EHS, purified laminin was as effective as unfractionated EHS at inducing an increase in albumin mRNA levels and albumin secretion; type IV collagen and heparan sulfate proteoglycan were ineffective.


Development ◽  
1987 ◽  
Vol 101 (3) ◽  
pp. 461-478 ◽  
Author(s):  
J.L. Duband ◽  
J.P. Thiery

The distribution of type I, III and IV collagens and laminin during neural crest development was studied by immunofluorescence labelling of early avian embryos. These components, except type III collagen, were present prior to both cephalic and trunk neural crest appearance. Type I collagen was widely distributed throughout the embryo in the basement membranes of epithelia as well as in the extracellular spaces associated with mesenchymes. Type IV collagen and laminin shared a common distribution primarily in the basal surfaces of epithelia and in close association with developing nerves and muscle. In striking contrast with the other collagens and laminin, type III collagen appeared secondarily during embryogenesis in a restricted pattern in connective tissues. The distribution and fate of laminin and type I and IV collagens could be correlated spatially and temporally with morphogenetic events during neural crest development. Type IV collagen and lamin disappeared from the basal surface of the neural tube at sites where neural crest cells were emerging. During the course of neural crest cell migration, type I collagen was particularly abundant along migratory pathways whereas type IV collagen and laminin were distributed in the basal surfaces of the epithelia lining these pathways but were rarely seen in large amounts among neural crest cells. In contrast, termination of neural crest cell migration and aggregation into ganglia were correlated in many cases with the loss of type I collagen and with the appearance of type IV collagen and laminin among the neural crest population. Type III collagen was not observed associated with neural crest cells during their development. These observations suggest that laminin and both type I and IV collagens may be involved with different functional specificities during neural crest ontogeny. (i) Type I collagen associated with fibronectins is a major component of the extracellular spaces of the young embryo. Together with other components, it may contribute to the three-dimensional organization and functions of the matrix during neural crest cell migration. (ii) Type III collagen is apparently not required for tissue remodelling and cell migration during early embryogenesis. (iii) Type IV collagen and laminin are important components of the basal surface of epithelia and their distribution is consistent with tissue remodelling that occurs during neural crest cell emigration and aggregation into ganglia.


Author(s):  
Mitsuo Shimizu ◽  
Kazunobu Minakuchi ◽  
Mina Moon ◽  
Junichi Koga

1992 ◽  
Vol 46 (4) ◽  
pp. 626-630 ◽  
Author(s):  
Yukihiro Ozaki ◽  
Aritake Mizuno ◽  
Fumiko Kaneuchi

Attenuated total reflection/Fourier transform infrared (ATR/FT-IR) spectra have been obtained in a nondestructive manner for the anterior surface, interior part, and posterior surface of the sclera, for the epithelium, Bowman's membrane, stroma, and endothelium of the cornea, and for the inner section of the Achilles' tendon of a rabbit. The corresponding spectra have been remeasured for the rabbit anterior and posterior lens capsule for purposes of comparison. The spectra of the three parts of the sclera and of the Bowman's membrane and stroma of the cornea are very close to the spectrum of purified type I collagen, confirming that their major components are type I collagen. The spectrum of the tendon is also very similar to that of purified type I collagen, but it contains a small contribution from hyaluronic acid in the 1100-1000 cm−1 region. The amide I bands of the type I collagen-containing tissues are sharp and symmetrical, and their frequencies (1642 cm−1) are almost identical to that (1640 cm−1) of polyglycine II, which takes a 3, helix formation, indicating that the secondary structure of type I collagen in the tissues examined is for practical purposes a slightly modified 31 helix. A comparison of the spectra of the type I collagen-containing tissues and those of the type IV collagen-containing tissues reveals that there are two major differences between them; one is the spectral features in the 1100-1000 cm1 region, where C-O stretching modes of polysaccharide are observed, and the other is the shape and frequency of the amide I band. Besides the peak at 1637 cm−1, the amide I bands of the type IV collagen-containing tissues have shoulders near 1650 and 1655 cm−1. This observation indicates that type IV collagen in the tissues examined assumes primarily a slightly modified 31 helix formation, but the percentages of α-helix and random coil structures are not negligible.


2017 ◽  
Vol 131 (5) ◽  
pp. 411-423 ◽  
Author(s):  
Bo Wang ◽  
Kevin Yao ◽  
Andrea F. Wise ◽  
Ricky Lau ◽  
Hsin-Hui Shen ◽  
...  

The regulatory role of a novel miRNA, miR-378, was determined in the development of fibrosis through repression of the MAPK1 pathway, miR-378 and fibrotic gene expression was examined in streptozotocin (STZ)-induced diabetic mice at 18 weeks or in unilateral ureteral obstruction (UUO) mice at 7 days. miR-378 transfection of proximal tubular epithelial cells, NRK52E and mesangial cells was assessed with/without endogenous miR-378 knockdown using the locked nucleic acid (LNA) inhibitor. NRK52E cells were co-transfected with the mothers against decapentaplegic homolog 3 (SMAD3) CAGA reporter and miR-378 in the presence of transforming growth factor-β (TGF-β1) was assessed. Quantitative polymerase chain reaction (qPCR) showed a significant reduction in miR-378 (P<0.05) corresponding with up-regulated type I collagen, type IV collagen and α-smooth muscle actin (SMA) in kidneys of STZ or UUO mice, compared with controls. TGF-β1 significantly increased mRNA expression of type I collagen (P<0.05), type IV collagen (P<0.05) and α-SMA (P<0.05) in NRK52E cells, which was significantly reduced (P<0.05) following miR-378 transfection and reversed following addition of the LNA inhibitor of endogenous miR-378. Overexpression of miR-378 inhibited mesangial cell expansion and proliferation in response to TGF-β1, with LNA–miR-378 transfection reversing this protective effect, associated with cell morphological alterations. The protective function of MAPK1 on miR-378 was shown in kidney cells treated with the MAPK1 inhibitor, selumetinib, which inhibited mesangial cell hypertrophy in response to TGF-β1. Taken together, these results suggest that miR-378 acts via regulation of the MAPK1 pathway. These studies demonstrate the protective function of MAPK1, regulated by miR-378, in the induction of kidney cell fibrosis and mesangial hypertrophy.


1990 ◽  
Vol 97 (1) ◽  
pp. 23-31
Author(s):  
T.M. Sweeney ◽  
R.C. Ogle ◽  
C.D. Little

The embryonal carcinoma PCC4uva differentiates into neurons in response to treatment with retinoic acid and dbcAMP. We used this in vitro model system to study the effects of laminin on early neural differentiation. Laminin substrata markedly potentiate neural differentiation of retinoic acid and dbcAMP-treated cultures. Only laminin induced more rapid neural cell body clustering, neurite growth and neurite fasciculation as compared to type IV collagen, type I collagen, and fibronectin substrata. Exogenous laminin substrata promoted greater cell attachment, cellular spreading and growth to confluence than type IV collagen, type I collagen, fibronectin and glass substrata. Laminin-induced effects were inhibited by addition of laminin antibodies or the synthetic laminin-derived peptide Ile-Gly-Ser-Arg-NH2 (YIGSR-NH2). Treatment with YIGSR-NH2 also inhibited neural differentiation in the absence of exogenous laminin substrata, whereas synthetic peptides containing the RGD sequence and a control peptide YIGSK-NH2 showed no inhibitory effects. These results are consistent with the hypothesis that specific interactions between an early differentiating cell population(s) and extracellular laminin are required during neural differentiation.


Sign in / Sign up

Export Citation Format

Share Document