scholarly journals Effects of Telbivudine Treatment on the Circulating CD4+T-Cell Subpopulations in Chronic Hepatitis B Patients

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yanhua Zheng ◽  
Zemin Huang ◽  
Xianhua Chen ◽  
Yi Tian ◽  
Jun Tang ◽  
...  

CD4+T cells serve as master regulators of the adaptive immune response to HBV. However, CD4+T-cell subsets are heterogeneous, and it remains unknown how the antiviral agents affect the different CD4+T cell subtypes. To this end, the expressions of signature transcription factors and cytokines of CD4+T-cell subtypes were examined in hepatitis B patients before and after treatment with telbivudine. Results showed that, upon the rapid HBV copy decrease induced by telbivudine treatment, the frequencies and related cytokines of Th17 and Treg cells were dramatically decreased, while those for Th2 cells were dramatically increased. No obvious changes were observed in Th1 cell frequencies; although, IFN-γexpression was upregulated in response to telbivudine treatment, suggesting another cell source of IFN-γin CHB patients. Statistical analyses indicated that Th17 and Tr1 (a Treg subtype) cells were the most sensitive subpopulations of the peripheral blood CD4+T cells to telbivudine treatment over 52 weeks. Thus, Th17 and Tr1 cells may represent a suitable and effective predictor of responsiveness during telbivudine therapy. These findings not only improve our understanding of hepatitis pathogenesis but also can aid in future development of appropriate therapeutic strategies to control viral hepatitis.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peng Wang ◽  
Qian Zhang ◽  
Liang Tan ◽  
Yanan Xu ◽  
Xubiao Xie ◽  
...  

T cells are an important part of the adaptive immune system and play critical roles in the elimination of various pathogens. T cells could differentiate into distinct cellular subsets under different extracellular signals and then play different roles in maintaining host homeostasis and defense. The mechanistic target of rapamycin (mTOR) is a conserved intracellular serine/threonine kinase which belongs to the phosphoinositide 3-kinase- (PI3K-) related kinase family. The mTOR signaling pathway is closely involved in a variety of cell biological processes, including cell growth and cell metabolism, by senses and integrates various environmental cues. Recent studies showed that mTOR including mTORC1 and mTORC2 is closely involved in the development of T cell subpopulations such as Th1, Th2, Th9, Th17, follicular helper T cells (Tfh), and Treg cells through distinctive pathways. We herein mainly focused on the recent progress in understanding the roles of mTOR in regulating the development and differentiation of CD4+ T cell subsets.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Shafqat R Chaudhry ◽  
Sajjad Muhammad

Background: Aneurysmal subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Devastating post-SAH complications after aneurysm treatment lead to poor clinical outcome. Current research suggests critical role of inflammation during early and delayed brain injury phases over which these complications arise. T helper cells can polarize to multiple functionally unique subsets. Here, we investigate different CD4+ T cell subsets during these brain injury phases after SAH and their dynamics during post-SAH complications. Methods: Anticoagulated peripheral venous blood was obtained from 15 SAH patients on days 1 and 7, and once from healthy controls. After erythrocyte lysis and single cell wash, 1 million cells were stained with different anti-human mouse monoclonal antibodies and were acquired on BD LSR Fortessa. Lymphocytes were gated based on low side scatter and high CD45 expression. Different CD3+CD4+ T cell subsets were characterized by differential cell surface expression of CXCR3 and CCR6 into Th1, Th2, Th17, whereas Tregs by CD25 hi and CD127 lo . SAH patients were dichotomized based on presence or absence of different post-SAH complications (hydrocephalus, seizures, CVS, cerebral ischemia) to assess association of T cell subsets with these complications. Results: Total CD4+ T cells were significantly increased after SAH. Interestingly, Th2 cells were significantly decreased and Th17 cells increased on day 7 compared to day 1 after SAH. However, regulatory T-cells were significantly increased on both assessment days compared to controls. The analysis of activation states was done by CD38 and HLA-DR expression. Th1 and Treg cells were significantly increased on day 1 in SAH patients who developed seizures and CVS, respectively. HLA-DR + CD38 + Th2 cells significantly increased on day 1 in SAH patients who developed hydrocephalus, whereas HLA-DR - CD38 - Th1 cells significantly increased on day 1 in patients with infections. HLA-DR - CD38 - Treg cells were significantly reduced on day 1 and day 7 in patients developing cerebral ischemia . Conclusion: CD4+ T cell subsets and Treg cells display dynamic patterns after SAH, and show a distinct pattern of polarization and activation states in specific post-SAH complications.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5542
Author(s):  
Osamu Yoshie

CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.


2003 ◽  
Vol 198 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Wael Haddad ◽  
Cristine J. Cooper ◽  
Zheng Zhang ◽  
Jeffrey B. Brown ◽  
Yuechun Zhu ◽  
...  

The recruitment of activated T cell subsets to sites of effector immune responses is mediated by homing receptors induced upon activation in secondary lymphoid tissue. Using an adoptive transfer model, the intestinal recruitment of CD4+ T cells activated with intraperitoneal antigen in complete Freund's adjuvant was examined. The data demonstrate that activated CD4+ T cells recruited to intestinal Peyer's patches (PP) and lamina propria (LP) up-regulate functional P-selectin glycoprotein ligand 1 (PSGL-1). Blockade of IL-12 inhibited functional PSGL-1 expression and reduced PP and LP CD4+ T cell recruitment by >40%. P-Selectin blockade reduced LP recruitment of activated cells by 56% without affecting PP recruitment. Studies of mice examined 3 d after adoptive transfer of differentiated T cell subsets revealed that Th1 but not Th2 cells were recruited to small intestine PP and LP. Mucosal addressin cell adhesion molecule blockade reduced Th1 recruitment to PP by 90% and to LP by >72%, whereas P-selectin blockade reduced Th1 recruitment to PP by 18% and Th1 recruitment to LP by 84%. These data suggest that IL-12–induced functional PSGL-1 expression is a major determinant for the recruitment of Th1 effector cells to noninflamed as well as inflamed intestine.


2021 ◽  
Vol 12 ◽  
pp. 204062232098672
Author(s):  
Hong-Qing Niu ◽  
Chenrui Yuan ◽  
Chenglan Yan ◽  
Na Li ◽  
Yuan-Sheng Lei ◽  
...  

Aims: CD4+ T cells play crucial roles as both mediators and regulators of the pathogenesis of rheumatoid arthritis (RA). However, the characteristics of CD4+ T cell subpopulations in the earliest stage of RA development remain unclear. Hence, we determined the proportions and absolute counts of circulating CD4+ T cell subsets in patients with seropositive undifferentiated arthritis (SUA), the early and preclinical stage of RA. Methods: Peripheral blood samples and clinical information were collected from 177 patients with SUA, 104 patients with RA, and 120 healthy controls. All patients were newly diagnosed and untreated. Proportions and absolute counts of CD4+ T cell subpopulations were determined by flow cytometric analysis. Results: In patients with SUA, percentages and absolute counts of circulating regulatory T (Treg) cells were decreased significantly and Th17/Treg cell ratios were abnormally increased, whereas Th17 cell numbers were similar to those in healthy controls. In addition, sex-based differences in circulating Treg cells were observed, with female SUA patients having lower proportions and absolute counts of Treg cells than those in males. Moreover, female patients with SUA had higher erythrocyte sedimentation rates and 28-joint Disease Activity Scores than those in males. Conclusion: Immune tolerance deficiency resulting from an abnormal reduction in circulating Treg cells might be the most crucial immunological event in the earliest stage of RA. The sex-specific disparity in Treg cells should also be considered for immunoregulatory and preventive strategies targeting early RA.


2011 ◽  
Vol 120 (12) ◽  
pp. 515-524 ◽  
Author(s):  
Carol Pridgeon ◽  
Laurence Bugeon ◽  
Louise Donnelly ◽  
Ursula Straschil ◽  
Susan J. Tudhope ◽  
...  

The regulation of human Th17 cell effector function by Treg cells (regulatory T-cells) is poorly understood. In the present study, we report that human Treg (CD4+CD25+) cells inhibit the proliferative response of Th17 cells but not their capacity to secrete IL (interleukin)-17. However, they could inhibit proliferation and cytokine production by Th1 and Th2 cells as determined by IFN-γ (interferon-γ) and IL-5 biosynthesis. Currently, as there is interest in the role of IL-17-producing cells and Treg cells in chronic inflammatory diseases in humans, we investigated the presence of CD4+CD25+ T-cells and IL-17 in inflammation in the human lung. Transcripts for IL-17 were expressed in mononuclear cells and purified T-cells from lung tissue of patients with chronic pulmonary inflammation and, when activated, these cells secrete soluble protein. The T-cell-specific transcription factors RORCv2 (retinoic acid-related orphan receptor Cv2; for Th17) and FOXP3 (forkhead box P3; for Treg cells) were enriched in the T-cell fraction of lung mononuclear cells. Retrospective stratification of the patient cohort into those with COPD (chronic obstructive pulmonary disease) and non-COPD lung disease revealed no difference in the expression of IL-17 and IL-23 receptor between the groups. We observed that CD4+CD25+ T-cells were present in comparable numbers in COPD and non-COPD lung tissue and with no correlation between the presence of CD4+CD25+ T-cells and IL-17-producing cells. These results suggest that IL-17-expressing cells are present in chronically inflamed lung tissue, but there is no evidence to support this is due to the recruitment or expansion of Treg cells.


2016 ◽  
Vol 113 (5) ◽  
pp. E568-E576 ◽  
Author(s):  
Jimena Perez-Lloret ◽  
Isobel S. Okoye ◽  
Riccardo Guidi ◽  
Yashaswini Kannan ◽  
Stephanie M. Coomes ◽  
...  

There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ+CD4+ T-helper 2 (TH2) cells orchestrate the type-2–driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081–E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4gfp+αβ+CD4+ TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell–intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24−/− T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1–regulated signaling. Following this prediction, we found that Trim24−/− T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β–mediated activation in vitro and in vivo, and fail to respond to IL-1β–exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell–intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11577-11577 ◽  
Author(s):  
Jooeun Bae ◽  
Brandon Nguyen ◽  
Yu-Tzu Tai ◽  
Teru Hideshima ◽  
Dharminder Chauhan ◽  
...  

11577 Background: Characterization of expression and function of immune regulatory molecules in tumor microenvironment will provide the framework for developing novel therapeutic strategies. Methods: We evaluated the expression and functional impact of various immuno-regulatory molecules, PD-1, PDL-1, PDL-2, LAG3, TIM3, OX40 and GITR, on the CD138+ tumor cells, myeloid derived suppressor cells (MDSC), and T cell subsets from patients with MGUS, SMM and active MM (newly diagnosed, relapsed, relapsed/refractory), and the myeloma-specific cytotoxic T lymphocytes (CTL) induced with XBP1/CD138/CS1 peptides. Results: PDL-1/PDL-2 was more highly expressed on CD138+ myeloma cells in active MM than SMM or MGUS. G-type MDSC (CD11b+CD33+HLA-DRlowCD15+). Treg cells (CD3+CD4+/CD25+FOXP3+) numbers were increased and expressed higher levels of PD1/PD-L1 in active MM than in MGUS, SMM or healthy donors. Among the checkpoint molecules (PD-1, PDL-1, PDL-2, LAG3, OX40, GITR) evaluated, PD-1 showed the highest expression on CD3+CD4+ and CD3+CD8+T cells in BMMC and PBMC from patients with active MM. Functionally, T cells from MM patients showed increased proliferation upon treatment with an individual immune agonist ( > 150%) or checkpoint inhibitor ( > 100%). Interestingly, each individual anti-checkpoint molecule induced proliferation of T cells expressing other checkpoint molecules. In addition, the blockade of PD1, LAG3 or TIM3 enhanced MM antigen-specific cytotoxicity, assessed by parameters including CD107a, granzyme B and IFN-g production, which was most prominent within the memory CTL subset of MM antigen-specific T cells. Conclusions: These results demonstrate an increased frequency of immune regulatory cells, which highly express checkpoint inhibitors in active MM. Direct stimulation with an immune agonist or blockade of a checkpoint inhibitor increased MM patients’ T cell proliferation and myeloma-specific CTL function, supporting development of combination immune regulatory therapies to improve patient outcome in MM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nara Vasconcelos Cavalcanti ◽  
Patrícia Palmeira ◽  
Marcelo Biscegli Jatene ◽  
Mayra de Barros Dorna ◽  
Magda Carneiro-Sampaio

Background and AimsCongenital heart diseases (CHDs) are diagnosed in approximately 9 in 1,000 newborns, and early cardiac corrective surgery often requires partial or complete thymectomy. As the long-term effect of early thymectomy on the subsequent development of the immune system in humans has not been completely elucidated, the present study aimed to evaluate the effects of thymus removal on the functional capacity of the immune system after different periods.MethodsA systematic review of the literature was performed using MEDLINE, EMBASE, LILACS and Scopus. The inclusion criteria were original studies that analyzed any component of the immune system in patients with CHD who had undergone thymectomy during cardiac surgery in the first years of life. The results were evaluated for the quality of evidence.ResultsTwenty-three studies were selected and showed that patients who underwent a thymectomy in the first years of life tended to exhibit important alterations in the T cell compartment, such as fewer total T cells, CD4+, CD8+, naïve and CD31+ T cells, lower TRECs, decreased diversity of the TCR repertoire and higher peripheral proliferation (increased Ki-67 expression) than controls. However, the numbers of memory T cells and Treg cells differed across the selected studies.ConclusionsEarly thymectomy, either partial or complete, may be associated with a reduction in many T cell subpopulations and TCR diversity, and these alterations may persist during long-term follow-up. Alternative solutions should be studied, either in the operative technique with partial preservation of the thymus or through the autograft of fragments of the gland.Systematic Review RegistrationProspero [157188].


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1590-1590 ◽  
Author(s):  
Zhi-Zhang Yang ◽  
Hyo Jin Kim ◽  
Shahrzad Jalali ◽  
Hongyan Wu ◽  
Tammy Price-Troska ◽  
...  

Abstract T cell Ig and ITIM domain (TIGIT) is an immune checkpoint molecule that is expressed on a variety of cell types including NK cells, effector and memory T cells, and Treg cells. Upon ligation with CD155, TIGIT delivers an inhibitory signal and negatively regulates anti-tumor responses. While important in normal T-cell biology, the pathological significance of TIGIT expression and function in the tumor microenvironment of the patients with follicular lymphoma (FL) is largely unknown. The present study sought to phenotypically and functionally characterize TIGIT+ T cell subsets in FL. While its expression is not detected on resting T cells in peripheral blood, we found that TIGIT is highly expressed on intratumoral T cells from FL. Treatment with cytokines such as IL-4 and TGF-β downregulated TIGIT expression on T cells. We found that TIGIT is predominantly expressed on effector memory T cells (TEM) with an activation/exhausted phenotype, and TIGIT+ T cells have higher expression levels of CD69 and PD-1 when compared to TIGIT- T cells. Functionally, TIGIT+ T cells displayed reduced capacity of cell proliferation and cytokine production (IFN-γ and IL-2). Using mass cytometry (CyTOF), we observed that TIGIT is abundantly expressed on some intratumoral Treg (CD4+CD25+Foxp3+) cells, while other Treg cells lack TIGIT expression in FL, forming two subsets of Treg cells: CD4+CD25+TIGIT+ and CD4+CD25+TIGIT-. These two subsets are phenotypically distinct in that CD25+TIGIT+ cells exhibited increased expression of activation/costimulatory markers such as CD69, CD27 and CD28 compared to CD25+TIGIT-, suggesting an activated Treg subset of CD25+TIGIT+ cells. This CD25+TIGIT+ subset had increased suppressive function and could more effectively inhibit activation and proliferation of CD8+ T cells than CD25+TIGIT- cells. Furthermore, we found that lymphoma B cells promoted the development of TIGIT-expressing T cells as TGF-β-mediated downregulation of TIGIT on T cells was inhibited when CD19+ lymphoma cells were present. Using a cohort of 31 FL patients, we found that intratumoral TIGIT-expressing T cells were associated with a favorable prognosis. Patients with TIGIT+ T cell numbers greater than 50% had better overall survival than patients with TIGIT+ T cell numbers less than 50%. Taken together, our results reveal a role of TIGIT in defining Treg cell subsets with different immune function and TIGIT expression may be useful in predicting patient outcome in FL. Disclosures Ansell: Takeda: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer: Research Funding; Seattle Genetics: Research Funding; Celldex: Research Funding; Regeneron: Research Funding; LAM Therapeutics: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Merck & Co: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document