scholarly journals Adamantyl Retinoid-Related Molecules Induce Apoptosis in Pancreatic Cancer Cells by Inhibiting IGF-1R and Wnt/β-Catenin Pathways

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lulu Farhana ◽  
Marcia I. Dawson ◽  
Jayanta K. Das ◽  
Farhan Murshed ◽  
Zebin Xia ◽  
...  

Pancreatic carcinoma has a dismal prognosis as it often presents as locally advanced or metastatic. We have found that exposure to adamantyl-substituted retinoid-related (ARR) compounds 3-Cl-AHPC and AHP3 resulted in growth inhibition and apoptosis induction in PANC-1, Capan-2, and MiaPaCa-2 pancreatic cancer cell lines. In addition, AHP3 and 3-Cl-AHPC inhibited growth and induced apoptosis in spheres derived from the CD44+/CD24+(CD133+/EpCAM+) stem-like cell population isolated from the pancreatic cancer cell lines. 3-Cl-AHPC-induced apoptosis was preceded by decreasing expression of IGF-1R, cyclin D1,β-catenin, and activated Notch-1 in the pancreatic cancer cell lines. Decreased IGF-1R expression inhibited PANC-1 proliferation, enhanced 3-Cl-AHPC-mediated apoptosis, and significantly decreased sphere formation. 3-Cl-AHPC inhibited the Wnt/β-catenin pathway as indicated by decreasedβ-catenin nuclear localization and inhibited Wnt/β-catenin activation of transcription factor TCF/LEF. Knockdown ofβ-catenin using sh-RNA also induced apoptosis and inhibited growth in pancreatic cancer cells. Thus, 3-Cl-AHPC and AHP3 induce apoptosis in pancreatic cancer cells and cancer stem-like cells and may serve as an important potential therapeutic agent in the treatment of pancreatic cancer.

1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


2020 ◽  
Author(s):  
Heidi Roth ◽  
Fatema Bhinderwala ◽  
Rodrigo Franco ◽  
You Zhou ◽  
Robert Powers

Abstract BackgroundAt less than 7%, pancreatic ductal adenocarcinoma (PDAC) has one of the poorest 5-year cancer survival rates and is set to be the leading cause of cancer related deaths by 2030. The co-chaperone protein DNAJA1 (HSP40) is downregulated four-fold in pancreatic cancer cells, but its impact on pancreatic ductal adenocarcinoma (PDAC) progression remains unclear.MethodsDNAJA1 was overexpressed in pancreatic cancer cell lines, BxPC-3 and MIA PaCa-2, through retroviral transfection. The impact of overexpressing DNAJA1 was investigated using a combination of untargeted metabolomics, stable isotope resolved metabolomics (SIRM), confocal microscopy, flow-cytometry, and cell-based assays.ResultsPancreatic cancer cells overexpressing DNAJA1 exhibited a global metabolomic change. Specifically, differential output from Warburg glycolysis, an increase in redox currency, and an alteration in amino acid levels were observed in both overexpression cell lines. DNAJA1 overexpression also led to mitochondrial fusion, an increase in the expression of Bcl-2, a modest protection from redox induced cell death, a loss of structural integrity due to the loss of actin fibers, and an increase in cell invasiveness in BxPC-3. These differences were more pronounced in BxPC-3, which contains a loss-of-function mutation in the tumor suppressing gene SMAD4.ConclusionsThe overexpression of DNAJA1 promoted cellular proliferation, redox tolerance, invasiveness, and anti-apoptosis, which suggests DNAJA1 has numerous regulatory roles. Overall, our findings suggest a proto-oncogenic role of DNAJA1 in PDAC progression and suggests DNAJA1 may function synergistically with other proteins with altered activity in pancreatic cancer cell lines.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 149
Author(s):  
David J. Wooten ◽  
Indu Sinha ◽  
Raghu Sinha

Survival rate for pancreatic cancer remains poor and newer treatments are urgently required. Selenium, an essential trace element, offers protection against several cancer types and has not been explored much against pancreatic cancer specifically in combination with known chemotherapeutic agents. The present study was designed to investigate selenium and Gemcitabine at varying doses alone and in combination in established pancreatic cancer cell lines growing in 2D as well as 3D platforms. Comparison of multi-dimensional synergy of combinations’ (MuSyc) model and highest single agent (HSA) model provided quantitative insights into how much better the combination performed than either compound tested alone in a 2D versus 3D growth of pancreatic cancer cell lines. The outcomes of the study further showed promise in combining selenium and Gemcitabine when evaluated for apoptosis, proliferation, and ENT1 protein expression, specifically in BxPC-3 pancreatic cancer cells in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiajun He ◽  
Hongjian Ding ◽  
Huaqing Li ◽  
Zhiyu Pan ◽  
Qian Chen

While many anti-cancer modalities have shown potent efficacy in clinical practices, cancer prevention, timely detection, and effective treatment are still challenging. As a newly recognized iron-dependent cell death mechanism characterized by excessive generation of lipid peroxidation, ferroptosis is regarded as a potent weapon in clearing cancer cells. The cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) is the core target for ferroptosis regulation, the overexpression of which dictates downregulated sensitivity to ferroptosis in cancer cells. Hence, we elaborated the pan-cancer level bioinformatic study and systematically elucidated the role of intra-tumoral expression of SLC7A11 in the survival of cancer patients and potential immunotherapeutic response. Specifically, 25/27 (92.6%) cancers were featured with upregulated SLC7A11 expression, where SLC7A11 overexpression is a risk factor for worse overall survival in 8 cancers. We also validated SLC7A11 expression in multiple pancreatic cancer cell lines in vitro and found that it was upregulated in most pancreatic cancer cell lines (p < 0.05). Single-cell sequencing method revealed the SLC7A11 was majorly expressed in cancer cells and mononuclear cells. To further explore the function of SLC7A11 in cancer progression, we analyzed the influence on cell proliferation after the knockdown or knockout of SLC7A11 by either CRISPR or RNAi methods. Besides, the association between SLC7A11 and drug resistance was characterized using bioinformatic approaches as well. We also analyzed the association between the expression of SLC7A11 in multi-omics level and the intra-tumoral infiltration of immune cells based on cell annotation algorithms. Moreover, the relationship between SLC7A11 and the expression of MHC, immune stimulators, immune inhibitors as well as the response to immunotherapy was investigated. In addition, the SLC7A11 expression in colon adenocarcinoma, uterine corpus endometrial carcinoma, and stomach adenocarcinoma (STAD) is also positively associated with microsatellite instability and that in head and neck squamous cell carcinoma, STAD, and prostate adenocarcinoma is positively associated with neoantigen level, which further revealed the potential relationship between SLC7A11 and immunotherapeutic response.


2005 ◽  
Vol 20 (4) ◽  
pp. 235-241 ◽  
Author(s):  
E. Greco ◽  
D. Basso ◽  
P. Fogar ◽  
S. Mazza ◽  
F. Navaglia ◽  
...  

Background We investigated in vitro whether IL-1β and TGF-β1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. Materials and methods Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1β and TGF-β1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. Results Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1β did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-β1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. Conclusions IL-1β enhances the invasive capacity of pancreatic cancer cells, whereas TGF-β1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-β1 signaling in pancreatic cancer treatment.


2017 ◽  
Vol 8 (10) ◽  
pp. 1744-1749 ◽  
Author(s):  
Dietmar Zechner ◽  
Ann-Christin Albert ◽  
Florian Bürtin ◽  
Brigitte Vollmar

2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 185-185
Author(s):  
Sven A. Lang ◽  
Franziska Brandes ◽  
Edward K. Geissler

185 Background: In human pancreatic cancer, expression of cMET is associated with poor survival. So far, activation/expression of cMET by hepatocyte growth factor (HGF) has been shown to induce proliferation and motility in cancer cells. Therefore, we hypothesized that inhibition of cMET in human pancreatic cancer cell lines impairs oncogenic signaling and tumor growth. Methods: Pancreatic cancer cell lines (HPAF-II, MiaPaCa2, L3.6pl, BxPC3, Panc02) and the cMET inhibitor INC280 (Novartis Oncology, Basel) were used. MiaPaCa2 and L3.6pl pancreatic cancer cells were grown with gemcitabine up to 500 and 250 nM, respectively (then called MiaPaCa2(G500) and L3.6pl(G250)). MTT and Boyden Chamber assays were used to determine effects of INC280 on growth and motility of cells in vitro. Expression of growth factor receptors, activation of signaling intermediates and expression of transcription factors were assessed by Western blotting. Finally, in vitro results were validated in an orthotopic tumor model using L3.6pl pancreatic cancer cell line. Results: All pancreatic cancer cell lines showed expression of cMET. In vitro treatment of cancer cells with INC280 led to a minor, dose-dependent inhibition of growth even when cells were supplemented with HGF. In contrast, migration assays showed a significant reduction of cancer cell motility upon INC280 when cells were stimulated with HGF (P<0.05). Regarding oncogenic signaling, INC280 led to inhibition of HGF-induced phosphorylation of AKT, ERK and FAK. In addition, c-Myc expression was diminished in cancer cells. Interestingly, gemcitabine resistant cell line MiaPaCa2(G500) showed higher cMET expression levels compared to the normal MiaPaCa2. Stimulation of MiaPaCa2(G500) with HGF led to strong induction of oncogenic signaling and tumor cell motility, an effect that was significantly diminished by INC280. Moreover, results from in vivo experiments show that therapy with INC280 (10 mg/kg/d) significantly reduces tumor growth as determined by final tumor weight (P<0.05). Conclusions: In pancreatic cancer cell lines, targeting cMET with INC280 abrogates oncogenic signaling in vitro and impairs tumor growth in vivo. Therefore, the concept of cMET inhibition warrants further preclinical evaluation.


Digestion ◽  
2019 ◽  
Vol 101 (6) ◽  
pp. 794-806 ◽  
Author(s):  
Jun Okazaki ◽  
Toshihito Tanahashi ◽  
Yasushi Sato ◽  
Jinsei Miyoshi ◽  
Tadahiko Nakagawa ◽  
...  

<b><i>Background/Aims:</i></b> Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive invasion, early metastasis, and resistance to chemotherapy, leading to a poor prognosis. To clarify the molecular mechanism of these malignant characteristics, we performed a genome-wide microRNA (miRNA) array analysis utilizing micro-cancer tissues from patients with unresectable PDAC (stage IV), obtained by endoscopic ultrasound-fine needle aspiration (EUS-FNA). <b><i>Methods:</i></b> The expression profiles of 2,042 miRNAs were determined using micro-cancer tissues from 13 patients with unresectable PDAC obtained by EUS-FNA. The relationship between individual miRNA levels and overall survival (OS) was analyzed. Possible target genes for miRNAs were bioinformatically analyzed using the online database miRDB. Pancreatic cancer cell lines PANC-1, MIA PaCa-2, and PK-8 were transfected with miRNA mimic or small interfering RNA, and cell invasion, epithelial-mesenchymal transition (EMT), and apoptosis markers were examined. miRNA and mRNA expressions were examined by quantitative polymerase chain reaction. <b><i>Results:</i></b> Of 2,042 miRNAs, the 10 that exhibited the lowest correlation coefficient (<i>p</i> ≤ 0.005) between miRNA expression level and OS among the patients were identified. The miRDB and expression analysis in cancer cell lines for the 10 miRNAs identified miR-296-5p and miR-1207-5p as biomarkers predictive of shorter survival (<i>p</i> &#x3c; 0.0005). Bioinformative target gene analysis and transfection experiments with miRNA mimics showed that <i>Bcl2-related</i> <i>ovarian</i> <i>killer</i> (<i>BOK</i>), a pro-apoptotic gene, is a target for miR296-5p in pancreatic cancer cells; transfection of miR-296-5p mimic into PANC-1, MIA PaCa-2, and PK-8 cells resulted in significant suppression of <i>BOK</i> mRNA and protein expression. These transfectants showed significantly higher invasion capability compared with control cells, and knock down of <i>BOK</i> in pancreatic cancer cells similarly enhanced invasion capability. Transfectants of miR-296-5p mimic also exhibited aberrant expression of EMT markers, including vimentin and N-cadherin. Moreover, these transfectants showed a significantly lower apoptosis rate in response to 5-fluorouracil and gemcitabine with a decrease of <i>BOK</i> expression, suggesting a role of miR-296-5p in drug resistance. <b><i>Conclusion:</i></b> These results suggest that miR-296-5p is a useful biomarker for a poor prognosis in patients with PDAC, and that the miR-296-5p/BOK signaling axis plays an important role in cell invasion, drug resistance, and EMT in PDACs.


Author(s):  
Zhou Jingyang ◽  
Che Jinhui ◽  
Xu Lu ◽  
Yang Weizhong ◽  
Li Yunjiu ◽  
...  

Backround: Pancreatic ductal adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. Methods: MicroRNAs (miRNAs) play very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent nontumor tissues. Results: Consistently,the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. Discussion: We next predicted miR-20b targeted FOXM1(Forkhead box protein M1)and identified the negative relationship between miR-320b and FOXM1.We also demonstrated that elevated miR-320b expression inhibited tumor growth in vivo. Conclusion: All of these results showed that miR-320b suppressed pancreatic cancer cells proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document