scholarly journals Identification of Prophages and Prophage Remnants within the Genome of Avibacterium paragallinarum Bacterium

Sequencing ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Y. Roodt ◽  
R. R. Bragg ◽  
J. Albertyn

Bacterial whole genome sequencing has delivered an abundance of prophage sequences as a by-product and the analysis of these sequences revealed ways in which phages have affected the genome of their host bacteria in various bacterial species. The aim of this study was to identify the phage-related sequences in the draft assembly of the Avibacterium paragallinarum genome, the causative agent of infectious coryza in poultry. Whole genome assembly was not possible due to the presence of gaps and/or repeats existent on the ends of contigs. However, genome annotation revealed prophage and prophage remnant sequences present in this genome. From the results obtained, a complete Mu-like bacteriophage could be identified that was termed AvpmuC-2M. A complete sequence of HP2-like bacteriophage, named AvpC-2M-HP2, was also identified.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathy E. Raven ◽  
Sophia T. Girgis ◽  
Asha Akram ◽  
Beth Blane ◽  
Danielle Leek ◽  
...  

AbstractWhole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48–72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.


Genomics ◽  
2020 ◽  
Author(s):  
Xinshuai Zhang ◽  
Yao Ruan ◽  
Wukang Liu ◽  
Qian Chen ◽  
Lihong Gu ◽  
...  

BMJ Open ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. e021823 ◽  
Author(s):  
Tanja Stadler ◽  
Dominik Meinel ◽  
Lisandra Aguilar-Bultet ◽  
Jana S Huisman ◽  
Ruth Schindler ◽  
...  

IntroductionExtended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae were first described in relation with hospital-acquired infections. In the 2000s, the epidemiology of ESBL-producing organisms changed as especially ESBL-producingEscherichia coliwas increasingly described as an important cause of community-acquired infections, supporting the hypothesis that in more recent years ESBL-producing Enterobacteriaceae have probably been imported into hospitals rather than vice versa. Transmission of ESBL-producing Enterobacteriaceae is complicated by ESBL genes being encoded on self-transmissible plasmids, which can be exchanged among the same and different bacterial species. The aim of this research project is to quantify hospital-wide transmission of ESBL-producing Enterobacteriaceae on both the level of bacterial species and the mobile genetic elements and to determine if hospital-acquired infections caused by ESBL producers are related to strains and mobile genetic elements predominantly circulating in the community or in the healthcare setting. This distinction is critical in prevention since the former emphasises the urgent need to establish or reinforce antibiotic stewardship programmes, and the latter would call for more rigorous infection control.Methods and analysisThis protocol presents an observational study that will be performed at the University Hospital Basel and in the city of Basel, Switzerland. ESBL-producing Enterobacteriaceae will be collected from any specimens obtained by routine clinical practice or by active screening in both inpatient and outpatient settings, as well as from wastewater samples and foodstuffs, both collected monthly over a 12-month period for analyses by whole genome sequencing. Bacterial chromosomal, plasmid and ESBL-gene sequences will be compared within the cohort to determine genetic relatedness and migration between humans and their environment.Ethics and disseminationThis study has been approved by the local ethics committee (Ethikkommission Nordwest-und Zentralschweiz) as a quality control project (Project-ID 2017–00100). The results of this study will be published in peer-reviewed medical journals, communicated to participants, the general public and all relevant stakeholders.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12446
Author(s):  
Darlene D. Wagner ◽  
Heather A. Carleton ◽  
Eija Trees ◽  
Lee S. Katz

Background Whole genome sequencing (WGS) has gained increasing importance in responses to enteric bacterial outbreaks. Common analysis procedures for WGS, single nucleotide polymorphisms (SNPs) and genome assembly, are highly dependent upon WGS data quality. Methods Raw, unprocessed WGS reads from Escherichia coli, Salmonella enterica, and Shigella sonnei outbreak clusters were characterized for four quality metrics: PHRED score, read length, library insert size, and ambiguous nucleotide composition. PHRED scores were strongly correlated with improved SNPs analysis results in E. coli and S. enterica clusters. Results Assembly quality showed only moderate correlations with PHRED scores and library insert size, and then only for Salmonella. To improve SNP analyses and assemblies, we compared seven read-healing pipelines to improve these four quality metrics and to see how well they improved SNP analysis and genome assembly. The most effective read healing pipelines for SNPs analysis incorporated quality-based trimming, fixed-width trimming, or both. The Lyve-SET SNPs pipeline showed a more marked improvement than the CFSAN SNP Pipeline, but the latter performed better on raw, unhealed reads. For genome assembly, SPAdes enabled significant improvements in healed E. coli reads only, while Skesa yielded no significant improvements on healed reads. Conclusions PHRED scores will continue to be a crucial quality metric albeit not of equal impact across all types of analyses for all enteric bacteria. While trimming-based read healing performed well for SNPs analyses, different read healing approaches are likely needed for genome assembly or other, emerging WGS analysis methodologies.


2020 ◽  
Vol 8 (6) ◽  
pp. 855 ◽  
Author(s):  
Alexandra Irrgang ◽  
Natalie Pauly ◽  
Bernd-Alois Tenhagen ◽  
Mirjam Grobbel ◽  
Annemarie Kaesbohrer ◽  
...  

Resistance to carbapenems is a severe threat to human health. These last resort antimicrobials are indispensable for the treatment of severe human infections with multidrug-resistant Gram-negative bacteria. In accordance with their increasing medical impact, carbapenemase-producing Enterobacteriaceae (CPE) might be disseminated from colonized humans to non-human reservoirs (i.e., environment, animals, food). In Germany, the occurrence of CPE in livestock and food has been systematically monitored since 2016. In the 2019 monitoring, an OXA-48-producing E. coli (19-AB01443) was recovered from a fecal sample of a fattening pig. Phenotypic resistance was confirmed by broth microdilution and further characterized by PFGE, conjugation, and combined short-/long-read whole genome sequencing. This is the first detection of this resistance determinant in samples from German meat production. Molecular characterization and whole-genome sequencing revealed that the blaOXA-48 gene was located on a common pOXA-48 plasmid-prototype. This plasmid-type seems to be globally distributed among various bacterial species, but it was frequently associated with clinical Klebsiella spp. isolates. Currently, the route of introduction of this plasmid/isolate combination into the German pig production is unknown. We speculate that due to its strong correlation with human isolates a transmission from humans to livestock has occurred.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Hiroaki Shigemura ◽  
Eri Sakatsume ◽  
Tsuyoshi Sekizuka ◽  
Hiroshi Yokoyama ◽  
Kunihiko Hamada ◽  
...  

ABSTRACT Dissemination of extended-spectrum-cephalosporin (ESC)-resistant Salmonella, especially extended-spectrum-β-lactamase (ESBL)-producing Salmonella, is a concern worldwide. Here, we assessed Salmonella carriage by food workers in Japan to clarify the prevalence of ESC-resistant Salmonella harboring blaCTX-M. We then characterized the genetic features, such as transposable elements, of blaCTX-M-harboring plasmids using whole-genome sequencing. A total of 145,220 stool samples were collected from food workers, including cooks and servers from several restaurants, as well as food factory workers, from January to October 2017. Isolated salmonellae were subjected to antimicrobial susceptibility testing (disk diffusion method), and whole-genome sequencing was performed for Salmonella strains harboring blaCTX-M. Overall, 164 Salmonella isolates (0.113%) were recovered from 164 samples, from which we estimated that at least 0.113% (95% confidence interval [CI]: 0.096 to 0.132%) of food workers may carry Salmonella. Based on this estimation, 3,473 (95% CI = 2,962 to 4,047) individuals among the 3,075,330 Japanese food workers are likely to carry Salmonella. Of the 158 culturable isolates, seven showed resistance to ESCs: three isolates harbored blaCMY-2 and produced AmpC β-lactamase, while four ESBL-producing isolates harbored blaCTX-M-14 (n = 1, Salmonella enterica serovar Senftenberg) or blaCTX-M-15 (n = 3, S. enterica serovar Haardt). blaCTX-M-15 was chromosomally located in the S. Haardt isolates, which also contained ISEcp1, while the S. Senftenberg isolate contained an IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid plasmid carrying blaCTX-M-14 along with ISEcp1. This study indicates that food workers may be a reservoir of ESBL-producing Salmonella and associated genes. Thus, these workers may contribute to the spread of blaCTX-M via plasmids or mobile genetic elements such as ISEcp1. IMPORTANCE Antimicrobial-resistant Salmonella bacteria arise in farm environments through imprudent use of antimicrobials. Subsequently, these antimicrobial-resistant strains, such as extended-spectrum-β-lactamase (ESBL)-producing Salmonella, may be transmitted to humans via food animal-derived products. Here, we examined Salmonella carriage among food handlers in Japan. Overall, 164 of 145,220 fecal samples (0.113%) were positive for Salmonella. Among the 158 tested isolates, four were identified as ESBL-producing isolates carrying ESBL determinants blaCTX-M-15 or blaCTX-M-14. In all cases, the genes coexisted with ISEcp1, regardless of whether they were located on the chromosome or on a plasmid. Our findings suggest that food workers may be a reservoir of ESBL-producing strains and could contribute to the spread of resistance genes from farm-derived Salmonella to other bacterial species present in the human gut.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Sara L. Loo ◽  
Anna Ong ◽  
Wunna Kyaw ◽  
Loïc M. Thibaut ◽  
Ruiting Lan ◽  
...  

ABSTRACT Genomic data reveal single-nucleotide polymorphisms (SNPs) that may carry information about the evolutionary history of bacteria. However, it remains unclear what inferences about selection can be made from genomic SNP data. Bacterial species are often sampled during epidemic outbreaks or within hosts during the course of chronic infections. SNPs obtained from genomic analysis of these data are not necessarily fixed. Treating them as fixed during analysis by using measures such as the ratio of nonsynonymous to synonymous evolutionary changes (dN/dS) may lead to incorrect inferences about the strength and direction of selection. In this study, we consider data from a range of whole-genome sequencing studies of bacterial pathogens and explore patterns of nonsynonymous variation to assess whether evidence of selection can be identified by investigating SNP counts alone across multiple WGS studies. We visualize these SNP data in ways that highlight their relationship to neutral baseline expectations. These neutral expectations are based on a simple model of mutation, from which we simulate SNP accumulation to investigate how SNP counts are distributed under alternative assumptions about positive and negative selection. We compare these patterns with empirical SNP data and illustrate the general difficulty of detecting positive selection from SNP data. Finally, we consider whether SNP counts observed at the between-host population level differ from those observed at the within-host level and find some evidence that suggests that dynamics across these two scales are driven by different underlying processes. IMPORTANCE Identifying selection from SNP data obtained from whole-genome sequencing studies is challenging. Some current measures used to identify and quantify selection acting on genomes rely on fixed differences; thus, these are inappropriate for SNP data where variants are not fixed. With the increase in whole-genome sequencing studies, it is important to consider SNP data in the context of evolutionary processes. How SNPs are counted and analyzed can help in understanding mutation accumulation and trajectories of strains. We developed a tool for identifying possible evidence of selection and for comparative analysis with other SNP data. We propose a model that provides a rule-of-thumb guideline and two new visualization techniques that can be used to interpret and compare SNP data. We quantify the expected proportion of nonsynonymous SNPs in coding regions under neutrality and demonstrate its use in identifying evidence of positive and negative selection from simulations and empirical data.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yasuhiro Uchimura ◽  
Madeleine Wyss ◽  
Sandrine Brugiroux ◽  
Julien P. Limenitakis ◽  
Bärbel Stecher ◽  
...  

We report here the complete genome sequences of 12 bacterial species of stable defined moderately diverse mouse microbiota 2 (sDMDMm2) used to colonize germ-free mice with defined microbes. Whole-genome sequencing of these species was performed using the PacBio sequencing platform yielding circularized genome sequences of all 12 species.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Yolanda Guillen ◽  
Maria Casadellà ◽  
Ruth García-de-la-Guarda ◽  
Abraham Espinoza-Culupú ◽  
Roger Paredes ◽  
...  

Bartonella bacilliformis is the causative agent of Carrion’s disease, a highly endemic human bartonellosis in Peru. We performed a whole-genome assembly of two B. bacilliformis strains isolated from the blood of infected patients in the acute phase of Carrion’s disease from the Cusco and Piura regions in Peru.


Sign in / Sign up

Export Citation Format

Share Document