scholarly journals Pentoxifylline Loaded Floating Microballoons: Design, Development and Characterization

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Prashant Malik ◽  
Upendra Nagaich ◽  
Raj Kaur Malik ◽  
Neha Gulati

The floating microballoons have been utilized to obtain prolonged and uniform release in the stomach. The objective of the present study involves design, development, and characterization of pentoxifylline loaded floating microballoons to prolong their gastric residence time. Pentoxifylline (trisubstituted xanthine derivative) loaded microballoons were prepared by the solvent evaporation technique using different concentrations of polymers like HPMC K4M and ethyl cellulose (EC) in ethyl alcohol and dichloromethane organic solvent system. Microballoons were characterized for their particle size, surface morphology, production yield, loading efficiency, buoyancy percentage, and in vitro drug release studies. From the characterization it was observed that increases in amount of polymers (HPMC K4M and EC) led to increased particle size, loading efficiency, and buoyancy percentage, and retarded drug release. The particle size, particle yield, loading efficiency, buoyancy percentage and in vitro drug release for optimized formulation (F3) were found to be 104.0±2.87 µm, 80.89±2.24%, 77.85±0.61%, 77.52±2.04%, and 82.21±1.29%, respectively. The data was fitted to different kinetic models to illustrate its anomalous (non-Fickian) diffusion. The in vitro result showed that formulations comprised of varying concentrations of ethyl cellulose in higher proportion exhibited much retarded drug release as compared to formulations comprised of higher proportion of varying concentrations of HPMC K4M.

Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


Author(s):  
Ashwin Kumar Saxena ◽  
Navneet Verma

Objective: The nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used medications in the world because of their demonstrated efficacy in reducing pain and inflammation. The arthritis, pain and inflammation are effectively treated with Lornoxicam, an effective NSAIDs. Because the drug is weakly acidic, it is absorbed easily in the GI tract, and has a short biological half-life of 3 to 5 hours. To meet the objectives of this investigation, we developed a modified release dosage form to provide the delivery of lornoxicam at sustained rate which was designed to prolong its efficacy, reduce dosage frequency, and enhance patient compliance. The present research work was focused on the development of lornoxicam microspheres using natural polymer like okra gum extracted from the pods of Abelmoschus esculentus Linn. and synthetic polymer like ethyl cellulose along with sodium alginate prepared by Ca2+ induced ionic-gelation cross-linking in a complete aqueous environment were successfully formulated. Materials and Method: The microspheres were prepared by using sodium alginate with natural polymer (okra gum) and synthetic polymer (ethyl cellulose) in different ratios by Ca2+ induced ionic-gelation cross-linking. The formulations were optimized on the basis of drug release up to 12 hrs. The physicochemical characteristics of Lornoxicam microspheres such as drug polymer interaction study by Fourier Transform Infrared (FTIR) and further confirmation by Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The formulated microspheres were characterized for particle size, percentage drug entrapment efficiency, micromeritic properties, surface morphology, percentage swelling index, in-vitro drug release study and mechanism of drug release. Results and Discussion: The FTIR Spectra revealed that there was no interaction between polymer and Lornoxicam which was further confirmed by DSC and XRD. All the formulated Lornoxicam microspheres were spherical in shape confirmed by SEM. The microspheres exhibited good flow properties and also showed high percentage drug entrapment efficiency. All the batches have excellent flow properties with angle of repose in the range of 25.38° ± 0.04 to 30.41° ± 0.07, carr’s index and hausner’s ratios in the range of 10.40% ± 0.018 to 16.66% ± 0.012 and 1.128 ± 0.09 to 2.225 ± 0.01, respectively. The optical microscopic studies revealed that the mean particle size of all the formulations were found in the range of 819.46 ± 0.07 to 959.88 ± 0.02 μm and percentage of drug entrapment were found to be between 72.35 ± 0.02 to 90.00 ± 0.05. Swelling index of prepared microspheres revealed that with increasing the polymer ratios, there were increase in the swelling of prepared microspheres, showing in the range of 600.76 ± 0.42 to 690.11 ± 0.03% for okra gum microspheres at the end of 9 hr in comparison with ethyl cellulose microspheres which ranges between 179.71 ± 0.07 to 227.73 ± 0.05% at the end of 7 hr. In-vitro drug release of prepared microspheres formulation code LSO4 and LSE4 were found to be 88.654 ± 0.25% and 93.971 ± 0.20% respectively at the end of 12 hr. It was suggested that increase in polymer concentration, the drug release from the prepared microspheres got retarded producing sustained release of lornoxicam. In-vitro drug release data obtained were fitted to various release kinetic models to access the suitable mechanism of drug release. Drug release from lornoxicam-loaded alginate-okra gum microspheres followed a pattern that resembled sustained release (Korsemeyer-Peppas model) (R2 = 0.9925 to 0.9951), and n ≤ 1 indicated anomalous diffusion (non-Fickian), supercase-II transport mechanism LSO4 (n = 1.039) over a period of 12 hour underlying in-vitro drug release. Moreover, zero order model (R2 = 0.9720 to 0.9949) were found closer to the best-fit Korsemeyer - Peppas model. In addition, the drug release from lornoxicam-loaded alginate-ethyl cellulose microspheres also follow Korsemeyer-Peppas model (R2 = 0.9741 to 0.9973) with near to Hixson-Crowell model (R2 = 0.9953 to 0.9985) and n < 1 indicated non-Fickian diffusion or anomalous transport mechanism. Moreover, first order model with non-Fickian diffusion mechanism (R2 = 0.9788 to 0.9918) were found closer to the best-fit Korsemeyer-Peppas model/ Hixson-Crowell model. Conclusion: The present study conclusively demonstrates the feasibility of effectively encapsulating Lornoxicam into natural polymer (okra gum) and synthetic polymer (ethyl cellulose) to form potential sustained drug delivery system. In conclusion, drug release over a period of 12 hrs, could be achieved from these prepared microspheres. A pH-dependent swelling and degradation of the optimized microspheres were also observed, which indicates that these microspheres could potentially be used for intestinal drug delivery.


2003 ◽  
Vol 48 ◽  
pp. 9-14 ◽  
Author(s):  
Kristina Mladenovska ◽  
Emilija Janevic ◽  
Marija Glavas-Dodov ◽  
Renata Slavevska-Raicki ◽  
Maja Simonoska ◽  
...  

Certain variations in the process parameters (emulsification time, surfactant concentration) were performed in order to prepare BSA-loaded gelatin microspheres with particle size ranging from 1 to 10 µm and high loading efficiency using a procedure originally employed by Tabata and Ikada. In vitro degradation and drug release studies in the presence of trypsin and collagenase, respectively, were performed in order to evaluate the potential of gelatin microspheres as regulated and sustained release systems for oral vaccination. Degradation data showed that the preparation procedure had provided prolonged degradation in the presence of both enzymes, suggesting complete in vivo degradation. Exponential dependence of the amount of drug released on time was evidenced. The diffusion coefficients were superior to 0.5 indicating the Case II anomalous Fickian diffusion, except for the particles smaller than 5 µm where in the presence of collagenase the transition to Super Case II transport was observed due to the higher rate of polymer degradation and BSA diffusion through the matrix. The mathematical modeling of drug release showed a biphasic release pattern in the presence of both enzymes, where the rate constants for the initial time release confirmed the influence of the particle size and/or enzymatic degradation rate on the drug release rate.


Author(s):  
Gurram Lakshmana murthy ◽  
Vasia Tamreen ◽  
Chandrika C. ◽  
Shazia Iryn ◽  
Suchitra M ◽  
...  

The main of the research work to develop sustained release floating matrix tablets of ATZ, which were designed to extend the gastric residence time and prolong the drug release after oral administration. Different grades of polymers such as EC and HPMC K100M were used in order to get the desired floating and sustained release profile over prolonged period of time. All the formulations extended the drug release up to 24 hours and more and the formulations were optimized for the desired release profiles. The release and floating property was depends on the polymer type and polymer proportion. The formulation prepared with Ethyl cellulose and HPMC K100M has more floating time than the formulation prepared with the Ethyl cellulose alone. The FTIR study shows that there is no drug-polymer interaction. This study gives the preliminary idea about the development of the floating drug delivery systems of Atazanavir without the use of gas generating agent.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 363-369
Author(s):  
SANJAY KUMAR GUPTA ◽  
Sradhanjali Patra ◽  
Syed Adnan Akber

The aim of this work was to develop a mucoadhesive buccal tablet for the buccal delivery of the alendronate via buccal mucosa. Buccal tablets of alendronate are designed to release drug at mucosal site for extended period of time without wash out of drug by saliva. Alendronate sodium is a bisphosphonates which has antiresorptive effect which is implicated in the prophylaxis and treatment of osteoporosis. Sodium alginate, ethyl cellulose and carbopol were selected as mucoadhesive polymers on the basis of their matrix forming properties. The objective of the study is to improve the bioavailability of alendronate buccal tablets. Extensive literature survey was done for the collection of theoretical and technical data. The methodology part includes the explanation of implemented methods in the present study. In present study, an attempt was made to design mucoadhesive buccal tablets containing alendronate, sodium alginate, ethyl cellulose and carbopol using as polymers. The tablets were prepared by direct compression method. The formulations were evaluated for hardness, thickness, friability, weight variation, drug content estimation, surface pH determination, swelling index, in vitro drug release. In vitro bioadhesive strength & in vitro release studies showed that formulation F11 showed optimum bioadhesive & exhibited optimum drug release 97.6% in 7hr. Kinetics results reveals that the F11 formulation follows zero order kinetics as correlation coefficient (r2) values are higher than that of first- order release kinetics.Optimized formula F11 show drug is released by non-Fickian diffusion mechanism. The stability studies of formulation F11 prepared mucoadhesive buccal tablets of alendronate were stable. Overall evaluations of the mucoadhesive of tablets show good mucoadhesive properties.


2020 ◽  
Vol 15 (1) ◽  
pp. 41-67
Author(s):  
Shreya Kaul ◽  
Neha Jain ◽  
Jaya Pandey ◽  
Upendra Nagaich

Introduction: The main purpose of the research was to develop, optimize and characterize tobramycin sulphate loaded chitosan nanoparticles based gel in order to ameliorate its therapeutic efficacy, precorneal residence time, stability, targeting and to provide controlled release of the drug. Methods: Box-Behnken design was used to optimize formulation by 3-factors (chitosan, STPP and tween 80) and 3-levels. Developed formulation was subjected for characterizations such as shape and surface morphology, zeta potential, particle size, in vitro drug release studies, entrapment efficiency of drug, visual inspection, pH, viscosity, spreadability, drug content, ex vivo transcorneal permeation studies, ocular tolerance test, antimicrobial studies, isotonicity evaluation and histopathology studies. Results: Based on the evaluation parameters, the optimized formulation showed a particle size of 43.85 ± 0.86 nm and entrapment efficiency 91.56% ± 1.04, PDI 0.254. Cumulative in vitro drug release was up to 92.21% ± 1.71 for 12 hours and drug content was found between 95.36% ± 1.25 to 98.8% ± 1.34. TEM analysis unfolded spherical shape of nanoparticles. TS loaded nanoparticulate gel exhibited significantly higher transcorneal permeation as well as bioadhesion when compared with marketed formulation. Ocular tolerance was evaluated by HET-CAM test and formulation was non-irritant and well-tolerated. Histopathology studies revealed that there was no evidence of damage to the normal structure of the goat cornea. As per ICH guidelines, stability studies were conducted and were subjected for 6 months. Conclusion: Results revealed that the developed formulation could be an ideal substitute for conventional eye drops for the treatment of bacterial keratitis.


2019 ◽  
Vol 11 (1) ◽  
pp. 191 ◽  
Author(s):  
Yogita Tyagi ◽  
N. V. Satheesh Madhav

Objective: Design and evaluation of fluvoxamine loaded bio-nanosuspensions using biopolymer which was isolated from the wood of Santalum album used as the stabilizer.Methods: The main aim of the present investigation was to obtain an ocular drug delivery system with improved stability using biopolymer. The fluvoxamine loaded Bio-nanosuspension was prepared using novel biopolymer isolated from Santalum album by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4% and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, %entrapment efficacy, in vitro drug release, stability studies.Results: The prepared bio-nanosuspension was subjected to the best formulation based on the comparison of above-mentioned evaluation parameters, so Fb3 (3%) formulation was found to be the best formulation showing an R2 value of 0.9744, T50% of 31.3 h and T80% of 50.1 h respectively. According to the release kinetics, the best fit model was found to be Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Santalum album provided excellent stability for the formulation, and resulting particle size for the best formulation was found to be 196 nm. The bio-nanosuspension had Polydispersity Index (PDI) of 0.19 with zeta potential of-20mV.Conclusion: The prepared bio-nanosuspension was found to be safe and compatible with the ophthalmic delivery for treatment of depression.


2015 ◽  
Vol 17 (4) ◽  
pp. 32-36
Author(s):  
Erhan Ozsagiroglu ◽  
Yuksel Avcibasi Guvenilir

Abstract The aim of this study was to encapsulate, L-ascorbic acid, in biopolymers in order to obtain (i) enhancing its encapsulation efficiency (ii) increasing drug release ratio using different pH mediums. Microparticles based on polycaprolactone, polyethylene glycol and casein are prepared by spray drying technique. Microparticles are in vitro characterized in terms of yield of production, particle size, morphology, encapsulation efficiency, and drug release. In this manner, the importance of the study is producing of a stable and effective drug encapsulation system by PCL-PEG-CS polymer mixture by spray dryer. We achieved minimum 27.540±0.656 μm particle size with 0.512 m2/g surface area, 84.05% maximum drug loading, and 68.92% drug release ratio at pH 9.6. Release profiles are fitted to previously developed kinetic models to differentiate possible release mechanisms. The Korsmeyer–Peppas model is the best described each release scenario, and the drug release is governed by non-Fickian diffusion at pH 9.6. Our study proposed as an alternative or adjuvants for controlling release of L-ascorbic acid.


Author(s):  
Rajashri B. Ambikar ◽  
Ashok V. Bhosale

Aims: The aim of this work is the formulation of Eudragit RL100 polymeric microsponges. The Microsponge Delivery System is a patented technique in which there is a polymeric system consisting of porous particles. Methodology: The ratio of Diclofenac sodium and eudragit RL100 varied from 1:1 to 13: 1 to formulate microsponge. Dichloromethane was used as internal phase and polyvinylalcohol was used as an external phase. The formed microsponges were characterized for particle size, entrapment efficiency, drug content, in vitro drug release and SEM. Results: With increase in drug: polymer ratio there is increase in production yield from 20.04% to 72.14%, and entrapment efficiency from 20.11% to 70.77%.  Drug content of formed microsponge varied between 50.18% to 91.09% whereas particle size ranged from 1.41 µm to 17.66 µm. Microsponge formulations F3, F4 and F5 showed desired particle size hence studied for further evaluation. Formulation F3, F4 and F5 showed controlled release of 89.54%, 98.5% and 98.76% respectively up to 6 hr. F3 showed more controlled release at the end of 6 hr. The drug release from microsponges was best fitted to Higuchi’s diffusion kinetics for all microsponge formulations with non-Fickian diffusion mechanism. The formed microsponge particles have spherical porous structure. Conclusion: Study showed significance of Microsponge Delivery System for ophthalmic administration.


Sign in / Sign up

Export Citation Format

Share Document