scholarly journals BSA - loaded gelatin microspheres: Comparative studies on biodegradation and drug release in presence of collagenase and trypsin

2003 ◽  
Vol 48 ◽  
pp. 9-14 ◽  
Author(s):  
Kristina Mladenovska ◽  
Emilija Janevic ◽  
Marija Glavas-Dodov ◽  
Renata Slavevska-Raicki ◽  
Maja Simonoska ◽  
...  

Certain variations in the process parameters (emulsification time, surfactant concentration) were performed in order to prepare BSA-loaded gelatin microspheres with particle size ranging from 1 to 10 µm and high loading efficiency using a procedure originally employed by Tabata and Ikada. In vitro degradation and drug release studies in the presence of trypsin and collagenase, respectively, were performed in order to evaluate the potential of gelatin microspheres as regulated and sustained release systems for oral vaccination. Degradation data showed that the preparation procedure had provided prolonged degradation in the presence of both enzymes, suggesting complete in vivo degradation. Exponential dependence of the amount of drug released on time was evidenced. The diffusion coefficients were superior to 0.5 indicating the Case II anomalous Fickian diffusion, except for the particles smaller than 5 µm where in the presence of collagenase the transition to Super Case II transport was observed due to the higher rate of polymer degradation and BSA diffusion through the matrix. The mathematical modeling of drug release showed a biphasic release pattern in the presence of both enzymes, where the rate constants for the initial time release confirmed the influence of the particle size and/or enzymatic degradation rate on the drug release rate.

2021 ◽  
Vol 62 (2) ◽  
pp. 144-162
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Introduction: The drawbacks assosiated with oral administration of drugscan be controlled or minimized by gastro retentive formulations that remain buoyant within the stomach for an extended time by providing prolonged gastric retention and releasethe drug in an exceedingly extended manner thereby improving bioavailability. The current research was to develop and optimize Domperidone and Famotidine floating tablets with extended release by Quality by Design approach. Method: Based on QTPP (Quality Target Product Profile), CQAs (Critical Quality Attributes)wereidentified. Risk analysis by the evaluation of formulation and process parameters showed that optimizing the levels of polymers could reduce high risk to achieve the target profile. A 23factor experimental design with midpoints was selected for statistical analysis and optimization. Results: HPMC K100 and Carbopol 934P had a positive effect while ethyl cellulose demonstrated a negative effect on the selected responses. Drug release kinetics followed the first-order release with Higuchi diffusion and Fickian diffusion. Optimized formula satisfying all the required parameters was selected and evaluated. The predicted response values were in close agreement with experimental response values. Abdominal X-ray imaging after oral administration of the tablets on a healthy rabbit’s stomach confirmed the extended floating behavior with shorter lag time. In vivo, pharmacokinetic studies in rabbits revealed that the optimized formulation exhibited prolonged drug release with enhanced Cmax, tmax, AUCo-t, and t1/2 of an optimized product when compared to the marketed product. Conclusions: It has been concluded that the application of Quality by Design in the formulation and optimization reduced the number of trials to produce a cost-effective formula.


2021 ◽  
Vol 16 ◽  
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Background: The present research aimed to develop and optimize extended-release floating tablets of Sacubitril and Valsartan through Quality by Design (QbD) approach. Risk analysis by formulation assessment and process parameters showed that optimizing the levels of the polymer will minimize high risk to meet the target profile. A two (2) level three (3) full factorial experimental design along with midpoints was carefully chosen for optimization and statistical analysis. Based on the literature, the independent and dependent variables were selected. Results: HPMC K100, Carbopol 934P had a positive effect, whereas Ethylcellulose had a negative effect on Floating time, drug release at 2 h, drug release at 12 h and, 50% responses. Drug release kinetics followed the first-order release with Higuchi and Fickian diffusion. Contour and overlay plots were utilized for an assortment of design space and optimized formula. ANOVA results of all the factors exhibited significance at p<0.05. Abdominal X-ray imaging of the optimized tablets on healthy rabbit’s stomach confirmed the floating behavior for more than 12 h. In vivo pharmacokinetic studies in rabbits showed that the optimized formulation exhibited prolonged and extended drug release with improved Cmax, tmax, AUCo-t, and t1/2 of test product when compared to marketed product. IVIVC model was developed by using dissolution data of in vitro and pharmacokinetics data of in-vivo by de-convolution method (Wagner-Nelson method). Conclusion: The Quality by Design implementation in the formulation and optimization abridged the number of trials to produce a cost-effective formula. In vivo studies confirmed that the formula was successfully developed with extended floating time (12 h) and drug release by risk analysis and experimental designs. Level A correlation was observed which confirmed a good correlation between in vitro and in vivo data.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550012
Author(s):  
YANG ZHANG ◽  
RENJIE WU ◽  
YING HU ◽  
YU DONG ◽  
LIFENG SHEN ◽  
...  

Background: Antibiotic-impregnated calcium sulfate delivery systems (ACDS) are commonly used to treat chronic osteomyelitis. Our research is to investigate drug release in vitro over a longer period, as a cautious predictor of in vivo release. Methods: The local release behavior of antibiotic in vitro was simulated. The consecutive dynamic eluting experiment was performed based on the pro-operative characteristic of osteomyelitis patients and the determined results of drug concentration in the human drainage tissue fluid (DTF). The concentration of each drug in the receiving solution was detected by ultra-performance liquid chromatography-tandem quadrupole detector mass spectrometry. The ACDS was reviewed by scanning electronic microscopy (SEM) after 48 h, and prepared to be eluted for another examination after 33 days. The mechanism of antibiotic release was analyzed by using the Ritger–Peppas and Weibull equations. Results: The cumulative release rate of vancomycin in a vancomycin-calcium sulfate delivery system (VCDS) was 77.50 % (3.0 mm diameter) and 72.43 % (4.8 mm diameter), while that of the tobramycin in a tobramycin-calcium sulfate delivery system (TCDS) was 88.0 % (3.0 mm diameter) and 84.55 % (4.8 mm diameter). At the 15th day, approximately 27.92% of vancomycin was and 29.35% of tobramycin was released from the local implant in vivo. Using SEM, numerous vancomycin and tobramycin particles were found to be attached to the columnar calcium sulfate crystals at the start of the experiment. The release behavior of the two antibiotics followed a combination of Fickian diffusion and Case II transport mechanisms within the first 48 h, and a Fickian diffusion mechanism during the subsequent time period. The correlation coefficient of tobramycin and vancomycin in vivo and in vitro was 0.9704–0.9949 and 0.9549–0.9782, respectively. Conclusion: A good correlation of the in vivo and in vitro cumulative release rates was observed by comparing the cumulative release rate of drugs in vitro by means of the dynamic eluting model, and in the DTF. Therefore, our study has proved that it is possible to use the dynamic eluting model as a cautious predictor of in vivo release.


Author(s):  
Krutika Sawant ◽  
Mitali Patel ◽  
Jiten Patel ◽  
Piyush Mundada

<p><strong>Objective: </strong>The objective of the present investigation was to prepare gastro-resistant microspheres of esomeprazole magnesium trihydrate (EMT) to prevent its degradation in the acidic environment of the stomach and enhance its bioavailability via intestinal absorption.</p><p><strong>Methods: </strong>EMT loaded gastro-resistant microspheres were prepared using hypromellose acetate succinate (HPMCAS) as the gastro-resistant polymer by ‘non-aqueous solvent evaporation’ technique. A 3-factor 3 level factorial design was used to optimise EMT: HPMCAS ratio, the concentration of Span 80 and stirring speed with respect to percent entrapment efficiency and particle size. Further characterization was carried out using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), <em>In vitro</em> release study and <em>In vivo</em> anti-ulcer activity.</p><p><strong>Results: </strong>Fourier transform infrared <strong>(</strong>FTIR) study indicated compatibility between drug and polymer. DSC study revealed that the drug was molecularly dispersed in the polymer. The optimised batch showed 49.63±1.23% drug entrapment and 170.12±3.36 μm particle size. SEM study showed that microspheres were spherical in shape<strong>. </strong><em>In vitro</em> drug release study showed only 4.28±1.23% drug release in simulated gastric media in 2 hr and 93.46±1.20% release in simulated intestinal media after 1 hr from the optimised batch.</p><p><strong>Conclusion: </strong>Results of <em>in vitro </em>release studies indicated the gastro-resistant nature of the developed microspheres. <em>In vivo</em> anti-ulcer activity demonstrated that EMT loaded microspheres were able to significantly reduce ethanol-induced ulcer formation in rats’ stomach as compared to the aqueous solution of EMT. So it can be concluded that the developed gastro-resistant microspheres of EMT prevented drug release in the stomach which would lead to a significant improvement in its bioavailability through enhanced intestinal absorption</p>


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2020 ◽  
Vol 57 (3) ◽  
pp. 180-188
Author(s):  
Roxana Iancu ◽  
Stefan Andrei Irimiciuc ◽  
Maricel Agop ◽  
Mihail Frasila ◽  
Maria-Alexandra Paun ◽  
...  

A series of four drug release formulations based on 5-fluorouracil encapsulated into a chitosan-based matrix were prepared by in situ hydrogelation with 3,7-dimethyl-2,6-octadienal. The formulations were investigated from structural and morphological aspects by FTIR spectroscopy, polarized light microscopy and scanning electron microscopy. It was established that 5-fluorouracil was anchored into the matrix as crystals, whose dimension varied as a function of the crosslinking density. The in vitro drug release simulated into a media mimicking the physiological environment revealed a progressive release of the 5-fluorouracil, in close interdependence with the crosslinking density. In the context of Pharmacokinetics behavioral analysis, a new mathematical procedure for describing drug release dynamics in polymer-drug complex system is proposed. Assuming that the dynamics of polymer-drug system�s structural units take place on continuous and nondifferentiable curves (multifractal curves), we show that in a one-dimensional hydrodynamic formalism of multifractal variables the drug release mechanism (Fickian diffusion, non-Fickian diffusion, etc) are given through synchronous dynamics at a differentiable and non-differentiable scale resolutions. Finally, the model is confirmed by the empirical data.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


Sign in / Sign up

Export Citation Format

Share Document