scholarly journals Neuroprotective Effect of Ginkgolide B on Bupivacaine-Induced Apoptosis in SH-SY5Y Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Le Li ◽  
Qing-guo Zhang ◽  
Lu-ying Lai ◽  
Xian-jie Wen ◽  
Ting Zheng ◽  
...  

Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property.

2021 ◽  
Vol 30 ◽  
pp. 096368972110350
Author(s):  
Shengsen Yang ◽  
Fei Zhou ◽  
Yi Dong ◽  
Fei Ren

α-mangostin has been confirmed to promote the apoptosis of MG-63 cells, but its specific pro-apoptosis mechanism in osteosarcoma (OS) remains further investigation. Here, we demonstrated that α-mangostin restrained the viability of OS cells (143B and Saos-2), but had little effect on the growth of normal human osteoblast. α-mangostin increased OS cell apoptosis by activating the caspase-3/8 cascade. Besides, α-mangostin induced endoplasmic reticulum (ER) stress and restrained the Wnt/β-catenin pathway activity. 4PBA (an ER stress inhibitor) or LiCl (an effective Wnt activator) treatment effectively hindered α-mangostin-induced apoptosis and the caspase-3/8 cascade. Furthermore, we also found that α-mangostin induced ER stress by promoting ROS production. And ER stress-mediated apoptosis caused by ROS accumulation depended on the inactivation of Wnt/β-catenin pathway. In addition, α-mangostin significantly hindered the growth of xenograft tumors, induced the expression of ER stress marker proteins and activation of the caspase-3/8 cascade, and restrained the Wnt/β-catenin signaling in vivo. In short, ROS-mediated ER stress was involved in α-mangostin triggered apoptosis, which might depended on Wnt/β-catenin signaling inactivation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangyu Deng ◽  
Sheng Chen ◽  
Dong Zheng ◽  
Zengwu Shao ◽  
Hang Liang ◽  
...  

Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum. This study investigated the mechanism by which icariin prevents H2O2-induced apoptosis in rat nucleus pulposus (NP) cells. NP cells were isolated from the rat intervertebral disc and they were divided into five groups after 3 passages: (A) blank control; (B) 200 μM H2O2; (C) 200 μM H2O2 + 20 μM icariin; (D) 20 μM icariin + 200 μM H2O2 + 25 μM LY294002; (E) 200 μM H2O2 + 25 μM LY294002. LY294002 is a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. NP cell viability, apoptosis rate, intracellular reactive oxygen species levels, and the expression of AKT, p-AKT, p53, Bcl-2, Bax, caspase-3 were estimated. The results show that, compared with the control group, H2O2 significantly increased NP cell apoptosis and the level of intracellular ROS. Icariin pretreatment significantly decreased H2O2-induced apoptosis and intracellular ROS and upregulated p-Akt and BCL-2 and downregulated caspase-3 and Bax. LY294002 abolished the protective effects of icariin. Our results show that icariin can attenuate H2O2-induced apoptosis in rat nucleus pulposus cells and PI3K/AKT pathway is at least partly included in this protection effect.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Chisato Kunitomi ◽  
Miyuki Harada ◽  
Jerilee Mariam Khong Azahry

Abstract Endometriosis exerts detrimental effects on ovarian physiology and compromises follicular health. Granulosa cells of endometriosis patients are characterized by increased apoptosis, as well as high oxidative stress. Among several pathophysiologic factors associated with endometriosis, it is expected that oxidative stress contributes to the induction of apoptosis in granulosa cells, although the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress, a local factor closely associated with oxidative stress, has emerged as a critical regulator of ovarian function. We hypothesized that ER stress is activated by high oxidative stress in granulosa cells in ovaries with endometrioma and mediates oxidative stress-induced apoptosis. Ovaries from patients with endometrioma and control were collected to determine apoptosis, oxidative stress and ER stress by TUNEL, immunohistochemical staining of 8-OHdG and ER stress sensors, respectively. Human granulosa-lutein cells (GLCs) obtained from IVF patients were cultured with H2O2 (an oxidative stress inducer) or tauroursodeoxycholic acid (TUDCA, an ER stress inhibitor in clinical use) to assess apoptosis and ER stress by quantitative PCR and FACS. Activity of pro-apoptotic factors was determined by caspase-8 activity assay and western blotting for cleaved caspase-3. Human GLCs from patients with endometrioma expressed up to two times higher level of mRNAs associated with the unfolded protein response (UPR), including ATF4, ATF6, the spliced form of XBP1, HSPA5, and CHOP. In addition, the levels of phosphorylated ER stress sensor proteins, IRE1 and PERK, were elevated. Given that ER stress results in phosphorylation of ER stress sensor proteins and induces UPR factors, these findings indicate that these cells were under ER stress. H2O2 increased expression of UPR-associated mRNAs in cultured human GLCs, and this effect was abrogated by pre-treatment with TUDCA. Treatment with H2O2 increased apoptosis and the activity of pro-apoptotic factors caspase-8 and caspase-3, both of which were attenuated by TUDCA. Our findings suggest that activated ER stress induced by high oxidative stress in granulosa cells in ovaries with endometrioma mediates apoptosis of these cells, leading to ovarian dysfunction in endometriosis patients. Targeting ER stress with currently clinically available ER stress inhibitors, or with these agents in combination with antioxidants, may serve as a novel strategy for rescuing endometriosis-associated ovarian dysfunction.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Donghua Huang ◽  
Yizhong Peng ◽  
Kaige Ma ◽  
Xiangcheng Qing ◽  
Xiangyu Deng ◽  
...  

Puerarin (PUR), an 8-C-glucoside of daidzein extracted from Pueraria plants, is closely related to autophagy, reduced reactive oxygen species (ROS) production, and anti-inflammatory effects, but its effects on human nucleus pulposus mesenchymal stem cells (NPMSCs) have not yet been identified. In this study, NPMSCs were cultured in a compression apparatus to simulate the microenvironment of the intervertebral disc under controlled pressure (1.0 MPa), and we found that cell viability was decreased and apoptosis level was gradually increased as compression duration was prolonged. After PUR administration, apoptosis level evaluated by flow cytometry and caspase-3 activity was remitted, and protein levels of Bas as well as cleaved caspase-3 were decreased, while elevated Bcl-2 level was identified. Moreover, ATP production detection, ROS, and JC-1 fluorography as well as quantitative analysis suggested that PUR could attenuate intercellular ROS accumulation and mitochondrial dysfunction. Besides, the rat tail compression model was utilized, which indicated that PUR could restore impaired nucleus pulposus degeneration induced by compression. The PI3K/Akt pathway was identified to be deactivated after compression stimulation by western blot, and PUR could rescue the phosphorylation of Akt, thus reactivating the pathway. The effects of PUR, such as antiapoptosis, cell viability restoration, antioxidation, and mitochondrial maintenance, were all counteracted by application of the PI3K/Akt pathway inhibitor (LY294002). Summarily, PUR could alleviate compression-induced apoptosis and cell death of human NPMSCs in vitro as well as on the rat compression model and maintain intracellular homeostasis by stabilizing mitochondrial membrane potential and attenuating ROS accumulation through activating the PI3K/Akt pathway.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2554-2554
Author(s):  
Holger W Auner ◽  
Christine Beham-Schmid ◽  
Niall Dillon ◽  
Pierangela Sabbattini

Abstract Plasma cells (PCs) are the terminally differentiated effector cells of the humoral immune system. The majority of PCs are short-lived and undergo programmed cell death in the form of apoptosis after a few days of intensive immunoglobulin secretion. Despite potentially wide-ranging implications for infection control, auto-immunity, and PC dyscrasias, the mechanisms that govern the initiation and execution of PC apoptosis are poorly understood. We used two well-established murine systems of PC differentiation and immunohistochemistry of human lymphoid tissue sections to study the regulation of PC apoptosis. IgM-secreting post-mitotic CD138+B220− PCs were differentiated in vitro from primary mouse splenic B cells using cytokines and LPS and purified by magnetic selection. Murine I.29mu+ B lymphoma cells were induced to undergo plasmacytic differentiation by stimulation with LPS. In both systems, terminal PC differentiation is followed by spontaneous apoptosis of half of the PCs within 48h, similar to PC apoptosis in vivo. We found that a sharp increase in endoplasmatic reticulum (ER) stress, which is caused by an imbalance between secretory load and capacity in the ER, occurs in PCs that have completed differentiation and begin to undergo apoptosis. In parallel, susceptibility specifically to ER stress-induced apoptosis but not to other apoptotic stimuli increases substantially in differentiated PCs, despite an ongoing ER stress response and expansion of the secretory machinery. Caspase-12, which has been linked specifically to ER stress-induced apoptosis, is activated and processed during programmed PC death. Using the specific inhibitor of caspase-12, zATADfmk, we found that caspase-12 mediates apoptotic DNA fragmentation and chromatin condensation in PCs undergoing apoptosis but not in B cells undergoing tunicamycin-induced apoptosis. In contrast, the major apoptotic effector caspases (caspase-9, caspase-3, caspase-7) downstream of the mitochondria become resistant to activation by apoptotic ER stress during terminal PC differentiation and are not activated during PC apoptosis. We observed that he pan-caspase inhibitor, zVADfmk, completely blocks tunicamycin-induced apoptosis in B cells but does not inhibit PC apoptosis or tunicamycin-induced cell death in PCs. Using the small molecule PAC-1, which specifically activates caspase-3 by targeting a “safety-catch” amino acid sequence that keeps caspase-3 inactive, we found that caspase-3 is stabilized in its inactive form in PCs and human myeloma cell lines, but not in B cells. Immunohistochemistry of human lymphoid tissue sections demonstrated that most primary reactive PCs and extramedullary myeloma cells undergo spontaneous apoptosis in vivo without activation of caspase-3. Thus, ER stress plays a major role in limiting the life span of short-lived PCs and activates caspase-12, which mediates nuclear apoptosis specifically in PCs. The major apoptotic effector caspases, however, become resistant to activation during terminal PC differentiation, and PC apoptosis is largely independent of caspases downstream of the mitochondria. These observations lead us to propose that developmentally regulated inhibition of key apoptotic caspases, which rapidly execute apoptosis in most cells, has evolved in PCs as a means to delay apoptosis under conditions of increasing ER stress linked to immunoglobulin secretion. Overwhelming ER stress ultimately limits the life span of short-lived PCs by inducing apoptosis using alternative mechanism involving caspase-12, which is redundant for the execution of ER stress-induced apoptosis in cells that can activate the classical effector caspases.


2008 ◽  
Vol 416 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Sven Horke ◽  
Ines Witte ◽  
Petra Wilgenbus ◽  
Sebastian Altenhöfer ◽  
Maximilian Krüger ◽  
...  

PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca2+ homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted in increased PON2 mRNA and protein levels. In contrast, when ER stress was caused by thapsigargin or A23187, we observed a Ca2+-dependent active degradation of PON2 mRNA, elicited by its 5′-untranslated region. In addition, thapsigargin and A23187 also induced PON2 protein degradation by a Ca2+-dependent calpain-mediated mechanism. Thus we provide evidence that independent mechanisms mediate the degradation of PON2 mRNA and protein after disturbance of Ca2+ homoeostasis. Furthermore, because Ca2+-disturbance induces ER stress, but abrogates the otherwise protective function of PON2 against ER-stress-induced apoptosis, we propose that the underlying cause of ER stress determines the efficacy of putative cellular defence mechanisms.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Madhavan Nampoothiri ◽  
Neetinkumar D. Reddy ◽  
Jessy John ◽  
Nitesh Kumar ◽  
Gopalan Kutty Nampurath ◽  
...  

Insulin is a cytokine which promotes cell growth. Recently, a few published reports on insulin in different cell lines support the antiapoptotic effect of insulin. But the reports fail to explain the role of insulin in modulating glutamate-mediated neuronal cell death through excitotoxicity. Thus, we examined the neuroprotective effect of insulin on glutamate-induced toxicity on differentiated SH-SY5Y neuronal cells. Changes in cell viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) based assay, while apoptotic damage was detected by acridine orange/ethidium bromide and Hoechst staining. Intracellular reactive oxygen species (ROS) accumulation and morphological alterations were also measured. Treatment with glutamate induced apoptosis, elevated ROS levels and caused damage to neurons. Insulin was able to attenuate the glutamate-induced excitotoxic damage to neuronal cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guosheng Cao ◽  
Huana Zhou ◽  
Nan Jiang ◽  
Yuwei Han ◽  
Yang Hu ◽  
...  

YiQiFuMai (YQFM) powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER) stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO-) injured mice and the oxygen-glucose deprivation- (OGD-) induced pheochromocytoma (PC12) cells. The results showed that single administration of YQFM (1.342 g/kg, i.p.) could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF) after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL) could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathwaysin vivoandin vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases.


Sign in / Sign up

Export Citation Format

Share Document