scholarly journals Synthesis of Polyethers Containing Triazole Units in the Backbone by Click Chemistry in a Tricomponent Reaction

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Moslem Mansour Lakouraj ◽  
Vahid Hasantabar ◽  
Nazanin Bagheri

A series of linear aromatic polyethers containing triazole units were synthesized via the direct click reaction of dibromide and bisethynyl compounds in the presence of sodium azide as one pot reaction. The structures of polymers were approved by using IR and 1H NMR techniques. The solubility experiments showed that polymers have good solubility in polar aprotic solvents such as DMSO, DMF, and NMP at higher temperatures. Thermal stability of the polymers was measured using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) which indicated that they possessed good thermal stability ( up to 558°C) and high (191.7–260°C) under N2 atmosphere. All the polymers were amorphous according to the DSC and X-ray diffraction. These polymers exhibited strong UV-vis absorption maxima near to 400 nm and up to 500 nm in DMSO solution.

2014 ◽  
Vol 1033-1034 ◽  
pp. 931-936
Author(s):  
Cong Yan Chen ◽  
Rui Lan Fan ◽  
Guan Qun Yun

A novel intumescent flame retardant (IFR) containing ferrocene and caged bicyclic phosphate groups, 1-oxo-4-[4'-(ferrocene carboxylic acid phenyl ester)] amide-2, 6, 7-trioxa-1-phosphabicyclo- [2.2.2] octane (PFAM), was successfully synthesized. The synthesized PFAM were added to flammable polyurethane (PU) as flame retardants and smoke suppressants. The structure of PFAM was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and elemental analysis. Thermal stability of PFAM was tested by themogravimetric analysis (TGA). The results revealed that PFAM had good thermal stability and high char weight, the char weight up to 54% at 600 °C. Flammability properties of PU/PFAM composites were investigated by limiting oxygen index (LOI) test and UL-94 test, respectively. The results of LOI tests showed that the addition of PFAM enhanced flame retardancy of PU. When the content of PFAM reaches to 3%, the LOI value is 22.2. The morphologies of the char for PU and PU/3% PFAM composite can be obtained after LOI testing were examined by SEM. The results demonstrated that PFAM could promote to form the compact and dense intumescent char layer. Experiments showed that, the PFAM application of polyurethane showed positive effect.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1093
Author(s):  
Ye Xue ◽  
Xiao Hu

In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.


2012 ◽  
Vol 482-484 ◽  
pp. 1898-1903
Author(s):  
Ying Xue Zhou ◽  
Xiao Dong Fan ◽  
Dan Xue

Supramolecular hydrogels were formed through F127, acryloyl chloride modified F127 inclusion complex with α-cyclodextrin, respectively. The structure of modified copolymers and inclusion complex was characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonance (1H-NMR). Hydrogels formed from supramolecular inclusion are imparted channel-type structure investigated by wide angle x-ray diffraction (WAXRD). Differential scanning calorimetry (DSC) and TG experiments showed that thermal stability of hydrogels depend on the nature of axis polymer. The relative model was proposed to elucidate the inclusion complexes and hydrogels formation.


2012 ◽  
Vol 490-495 ◽  
pp. 3868-3873 ◽  
Author(s):  
Xiao Hong Yang ◽  
Xi Peng Nie ◽  
Jian Zhong Jiang

Bulk metallic glasses (BMGs) of Cu45Zr48-xAl7Tix with x= 0, 1.5, and 3 at.% were prepared by copper mould casting. The corrosion resistance of the BMGs with different Ti contents was examined by potentiodynamic polarization tests and weight loss measurements in 1 N NaOH, 1 N H2SO4, 1 N H2SO4 + 0.01 N NaCl and 0.5 N NaCl solutions, respectively. The newly-developed BMGs’ corrosion resistance in Cl-- or both H+ and Cl--ions containing solutions can be greatly enhanced. The influence of Ti addition on glass forming ability (GFA) and thermal stability was investigated by x-ray diffraction and differential scanning calorimetry in detail. The alloy containing 1.5 at.% Ti exhibits the largest GFA, the critical size comes up to 10 mm in diameter.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Rahmouni Abdelkader ◽  
Harrane Amine ◽  
Belbachir Mohammed

Polyaniline salt form (PANI-ES) was synthesized by oxidative polymerization of aniline using potassium persulfate as an oxidant and an acid-exchanged montmorillonite clay called Maghnite-H+as an effective catalyst. The clay, which was used as a catalyst, was supplied by a local company known as ENOF Maghnia (Western Algeria). The chemical stability of PANI has been investigated by thermogravimetry and differential scanning calorimetry, that a good thermal stability of PANI could be improved by combining PANI with montmorillonite. TGA results illustrated that there were two major stages for weight loss of the ES-form PANI powder sample. The different forms of PANI were characterized by infrared spectroscopy, thermal analysis, and H-NMR spectroscopy and conductivity measurements.


1992 ◽  
Vol 4 (2) ◽  
pp. 67-71
Author(s):  
N. R. Patel ◽  
N. Z. Patel ◽  
R. M. Patel

Unsaturated polyamides were prepared by condensing /3(4-ethoxyphenyl) glutaconic acid with various aromatic diamines. The polycondensates were characterized by IR spectroscopy, vapor phase osmometry, thermogravimetric analysis, differential scanning calorimetry and elemental analysis. All resins were found to decompose in the range '-210-600 °C. The kinetics of decomposition were studied. The results indicated that the resins possess reasonably good thermal stability.


2021 ◽  
Author(s):  
Xinru Hu ◽  
Jilin Wang ◽  
Jian He ◽  
Guoyuan Zheng ◽  
Disheng Yao ◽  
...  

Abstract Two kinds of novel organic-inorganic bismuth-halide hybrid monocrystalline compounds (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 were synthesized and characterized. The crystal structure, intermolecular interaction, morphology, chemical groups and bonds, optical and thermal stability of the samples were systematically investigated through single crystal X-ray diffraction, Hirshfeld surface analysis, SEM, FTIR, TG and UV-vis diffuse reflectance spectra. The results indicated that (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 crystals displayed a monoclinic system with the space group P21/c and P21/n at room temperature, respectively. These materials showed strong absorption in the ultraviolet and visible light regions, resulting in very low Eg, which could be continuously adjustable from 1.67 eV to 3.21 eV by changing the halogen ratio. In addition, these hybrid materials also exhibited good thermal stability. The decomposition temperature of (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 were 260℃ and 300℃ respectively. Therefore, these organic-inorganic bismuth-halide hybrid compounds have excellent development potential in the field of solar cell research.


2020 ◽  
Vol 10 (22) ◽  
pp. 8122
Author(s):  
Xiang He ◽  
Yaokun Ye ◽  
Nan Yan ◽  
Feng Ding ◽  
Chaozhen Li ◽  
...  

In order to satisfy the performance requirements of the pyrotechnic ignition composition of a space mission under an extreme thermal environment, it is necessary to analyze and verify the thermal stability of magnesium/tellurium dioxide (Mg/TeO2) ignition composition at a temperature of 180 °C. The thermal stability of the ignition composition of Mg/TeO2 and its components after exposure to 180 °C for 2–10 days was studied by means of apparent morphology analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), content change analysis, and the P-t curve test. The results showed that after exposure to 180 °C for 2–10 days, no obvious changes, such as ruptures, expansion, or shrinkage, were found by optical microscope, and no changes in morphology and surface details were found by scanning electron microscope (SEM). XRD showed that no other new substance was found in the mixture except magnesium hydroxide (Mg (OH)2). DSC showed that the main reaction peak temperature of the ignition composition of Mg/TeO2 was after 500 °C and that no endothermic/exothermic reaction occurred before 380 °C. The exothermic pre-reaction took place at 381 °C to 470 °C, the weight loss ratio was within 0.71%, the content of the magnesium component varied from 0.49% to 0.90%, the peak pressure attenuation of the ignition composition of 360-mesh Mg/TeO2 was 8.07%, and the pressure rise time was basically unchanged. The results showed that the ignition composition of Mg/TeO2 had good thermal stability after exposure to 180 °C temperatures.


2014 ◽  
Vol 915-916 ◽  
pp. 780-783
Author(s):  
Hong Wang ◽  
Ming Tian Li ◽  
Yue Lu ◽  
Di Liu

Pyrrole and m-toluidine copolymer (P(PY/MT)) / montmorillonite (MMT) Composites were prepared by in situ chemical polymerization of pyrrole with m-toluidine monomer in the presence of montmorillonite. The structural, morphological and thermal properties of these composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). X-ray diffraction result for P(PY/MT)-MMT illuminated the intercalation of P(PY/MT) copolymer between the clay layers. The FT-IR result showed the successful incorporation of montmorillonite clay in the prepared P(PY/MT)/MMT composite. The higher thermal stability of high MMT content rate might be attributed to its higher chain compactness due to the interfacial interaction between the P(PY/MT) and the clay.


Sign in / Sign up

Export Citation Format

Share Document