scholarly journals Exercise-Induced Muscle Damage and Running Economy in Humans

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Cláudio de Oliveira Assumpção ◽  
Leonardo Coelho Rabello Lima ◽  
Felipe Bruno Dias Oliveira ◽  
Camila Coelho Greco ◽  
Benedito Sérgio Denadai

Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.

2018 ◽  
Vol 60 ◽  
pp. 1-9 ◽  
Author(s):  
Leonardo C.R. Lima ◽  
Natália M. Bassan ◽  
Adalgiso C. Cardozo ◽  
Mauro Gonçalves ◽  
Camila C. Greco ◽  
...  

2007 ◽  
Vol 292 (6) ◽  
pp. R2168-R2173 ◽  
Author(s):  
J. Mark Davis ◽  
E. Angela Murphy ◽  
Martin D. Carmichael ◽  
Mark R. Zielinski ◽  
Claire M. Groschwitz ◽  
...  

Downhill running is associated with fiber damage, inflammation, delayed-onset muscle soreness, and various functional deficits. Curcumin, a constituent of the Indian spice turmeric has been investigated for its anti-inflammatory activity and may offset some of the damage and functional deficits associated with downhill running. This study examined the effects of curcumin on inflammation and recovery of running performance following downhill running in mice. Male mice were assigned to downhill placebo (Down-Plac), downhill curcumin (Down-Cur), uphill placebo (Up-Plac), or uphill curcumin (Up-Cur) groups and run on a treadmill at 22 m/min at −14% or +14% grade, for 150 min. At 48 h or 72 h after the up/downhill run, mice ( experiment 1) underwent a treadmill performance run to fatigue. Another subset of mice was placed in voluntary activity wheel cages following the up/downhill run ( experiment 2) and their voluntary activity (distance, time and peak speed) was recorded. Additional mice ( experiment 3) were killed at 24 h and 48 h following the up/downhill run, and the soleus muscle was harvested for analysis of inflammatory cytokines (IL-1β, IL-6, and TNF-α), and plasma was collected for creatine kinase analysis. Downhill running decreased both treadmill run time to fatigue (48 h and 72 h) and voluntary activity (24 h) ( P < 0.05), and curcumin feedings offset these effects on running performance. Downhill running was also associated with an increase in inflammatory cytokines (24 h and 48 h) and creatine kinase (24 h) ( P < 0.05) that were blunted by curcumin feedings. These results support the hypothesis that curcumin can reduce inflammation and offset some of the performance deficits associated with eccentric exercise-induced muscle damage.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2274 ◽  
Author(s):  
Leonardo C. R. Lima ◽  
Renan V. Barreto ◽  
Natália M. Bassan ◽  
Camila C. Greco ◽  
Benedito S. Denadai

This study examined the effects of anthocyanin-rich antioxidant juice (AJ) on the recovery of exercise-induced muscle damage (EIMD) and the running economy (RE) following downhill running (DHR). Thirty healthy young men were randomly divided into two blinded groups and consumed either AJ or placebo (PLA) for nine days (240 mL twice-a-day). On day 5, the participants from both groups ran downhill (−15%) for 30 min at 70% of their maximal oxygen uptake (VO2max) speeds. The changes in RE (oxygen uptake (VO2) and perceived effort (PE) during 5-min runs at 80%VO2max) and EIMD (isometric peak torque (IPT), muscle soreness (SOR) and serum creatine kinase activity (CK)) were compared over time and between the groups on the 4 days following DHR. VO2 and PE increased (p < 0.05) immediately following DHR for both groups and remained elevated for PLA until 48h post-DHR while fully recovering 24 h post-DHR for AJ. SOR was greater (p < 0.05) for PLA throughout the study. CK increased for both groups and was greater (p < 0.05) for PLA at 96 h post-DHR. IPT decreased for both groups but recovered faster for AJ (72 h) compared to PLA (no full recovery). AJ accelerated recovery of RE and EIMD and should be used in specific contexts, but not chronically.


2006 ◽  
Vol 291 (5) ◽  
pp. R1344-R1348 ◽  
Author(s):  
Martin D. Carmichael ◽  
J. Mark Davis ◽  
E. Angela Murphy ◽  
Adrienne S. Brown ◽  
James A. Carson ◽  
...  

Brain cytokines, induced by various inflammatory challenges, have been linked to sickness behaviors, including fatigue. However, the relationship between brain cytokines and fatigue after exercise is not well understood. Delayed recovery of running performance after muscle-damaging downhill running is associated with increased brain IL-1β concentration compared with uphill running. However, there has been no systematic evaluation of the direct effect of brain IL-1β on running performance after exercise-induced muscle damage. This study examined the specific role of brain IL-1β on running performance (either treadmill or wheel running) after uphill and downhill running by manipulating brain IL-1β activity via intracerebroventricular injection of either IL-1 receptor antagonist (ra; downhill runners) or IL-1β (uphill runners). Male C57BL/6 mice were assigned to the following groups: uphill-saline, uphill-IL-1β, downhill-saline, or downhill-IL-1ra. Mice initially ran on a motor-driven treadmill at 22 m/min and −14% or +14% grade for 150 min. After the run, at 8 h (wheel cage) or 22 h (treadmill), uphill mice received intracerebroventricular injections of IL-1β (900 pg in 2 μl saline) or saline (2 μl), whereas downhill runners received IL-1ra (1.8 μg in 2 μl saline) or saline (2 μl). Later (2 h), running performance was measured (wheel running activity and treadmill run to fatigue). Injection of IL-1β significantly decreased wheel running activity in uphill runners ( P < 0.01), whereas IL-1ra improved wheel running in downhill runners ( P < 0.05). Similarly, IL-1β decreased and Il-1ra increased run time to fatigue in the uphill and downhill runners, respectively ( P < 0.01). These results support the hypothesis that increased brain IL-1β plays an important role in fatigue after muscle-damaging exercise.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leonardo Coelho Rabello de Lima ◽  
Carlos Roberto Bueno Junior ◽  
Claudio de Oliveira Assumpção ◽  
Natália de Menezes Bassan ◽  
Renan Vieira Barreto ◽  
...  

This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1–4 days after a 30-min downhill run (−15%). Neuromuscular function was compromised (P &lt; 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (−24.9 ± 6.9% vs. −16.3 ± 6.5%, respectively) and 4 days (−16.6 ± 14.9% vs. −4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L–1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L–1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonghyuk Park ◽  
Jimmy Kim ◽  
Toshio Mikami

Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.


2017 ◽  
Vol 6 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Fumiya Tanji ◽  
Yusuke Shirai ◽  
Toshiki Tsuji ◽  
Wataru Shimazu ◽  
Yoshiharu Nabekura

2011 ◽  
Vol 26 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Sayaka DOMEN ◽  
Shunsuke TAITO ◽  
Kana KONISHI ◽  
Makoto TAKAHASHI ◽  
Kiyokazu SEKIKAWA ◽  
...  

2020 ◽  
Vol 75 (11) ◽  
pp. 2446
Author(s):  
Steve Noutong Njapo ◽  
Brittney Heard ◽  
Mohamed Morsy

Sign in / Sign up

Export Citation Format

Share Document