scholarly journals Approximate Single-Diode Photovoltaic Model for EfficientI-VCharacteristics Estimation

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jieming Ma ◽  
Ka Lok Man ◽  
T. O. Ting ◽  
Nan Zhang ◽  
Sheng-Uei Guan ◽  
...  

Precise photovoltaic (PV) behavior models are normally described by nonlinear analytical equations. To solve such equations, it is necessary to use iterative procedures. Aiming to make the computation easier, this paper proposes an approximate single-diode PV model that enables high-speed predictions for the electrical characteristics of commercial PV modules. Based on the experimental data, statistical analysis is conducted to validate the approximate model. Simulation results show that the calculated current-voltage (I-V) characteristics fit the measured data with high accuracy. Furthermore, compared with the existing modeling methods, the proposed model reduces the simulation time by approximately 30% in this work.

2019 ◽  
Vol 6 (3) ◽  
pp. 235-238
Author(s):  
I. Murashov ◽  
V. Frolov ◽  
A. Kvashnin ◽  
J. Valenta ◽  
D. Simek ◽  
...  

The article is devoted to the study of the high-current AC circuit breaker. The results of the study are presented for various configurations of the arc divider. The study includes methods of spectral diagnostics and high-speed camera shooting synchronized with the electrical characteristics of the circuit breaker (current, voltage) in time. The obtained results allow to determine the composition of the plasma and dynamics of changes in the composition of the discharge in time. Calculation of the plasma composition and properties is made according to the obtained data, which makes it possible to take into account the products of circuit breaker materials ablation in numerical simulation. Non-stationary two-dimensional mathematical model with a moving mesh is developed. The obtained results allow to correct and verify the developed mathematical model of the circuit breaker operation. The evaluation of the arc divider influence is presented in the article.


Author(s):  
Zhenyi Wei ◽  
Marcio de Queiroz ◽  
Jing Chen ◽  
Bahadir K. Gunturk ◽  
Melda Kunduk

This paper introduces a new seven-mass biomechanical model for the vibration of vocal folds. The model is based on the body-cover layer concept of the vocal fold biomechanics, and segments the cover layer into three masses. This segmentation facilitates the model comparison with the motion of the vocal glottis contour derived from modern high-speed digital imaging systems. The model simulation is compared to experimental data from a pair of healthy vocal folds showing good agreement in the frequency and time domains. The proposed model is also shown to outperform a previously-developed model that does not explicitly account for the body layer dynamics.


Author(s):  
Yonal Kirsal

Wireless and mobile communication systems have evolved considerably in recent years. Seamless mobility is one of the main challenges facing mobile users in wireless and mobile systems. However, highly mobile users lead to a high number of handover failures and unnecessary handovers due to the limited resources and coverage limitations with a high mobile speed. The traditional handover models are unable to cope with high mobile users in such environments. This paper proposes, an intelligent handover decision approach to minimize the probability of handover failures and unnecessary handovers whilst maximizing the usage of resources in highly mobile environments. The proposed approach is based on modelling the system using a Markov chain to enhance the system’s performance in terms of blocking probability, mean queue length and transmission delay. The results are compared with the traditional handover model. Simulation is also employed to validate the accuracy of the proposed model. Numerical results have shown that the proposed method outperforms the traditional algorithm over a wide range of handover failures and significantly reduced the number of such failures and unnecessary handovers. The results of this study show that quality if service (QoS) measures of such systems can be evaluated efficiently and accurately using the proposed analytical model. However, the performance results have also shown that it is still necessary to explore an effective model for operational spaces. In addition, the proposed model can also be adapted to various types of networks considering the high speed of the mobile user and the radius of the network.


Author(s):  
Fei Lin ◽  
Xiaofan Wang ◽  
Zhongping Yang ◽  
Hu Sun ◽  
Wenzheng Liu ◽  
...  

Pantograph–catenary disconnection occurs quite frequently in high-speed situations. Pantograph arcing has a significant impact on the contact surfaces and power quality. This article focuses on the effect on the electrical characteristics of the four-quadrant converter of pantograph arcing. An arc model which combines Cassie’s arc model with Mayr’s arc model is built. This article mainly researches the influence of the pantograph arcing on the four-quadrant converter in different durations. Pantograph arcing leads to voltage pulse in voltage, as well as the harmonics in the current of the alternating current side. At the same time, the direct current voltage decreases when the arc occurs. Therefore, it can ultimately decrease the output torque and increase the torque pulsation of the motor.


Author(s):  
LiLung Lai ◽  
Nan Li ◽  
Qi Zhang ◽  
Tim Bao ◽  
Robert Newton

Abstract Owing to the advancing progress of electrical measurements using SEM (Scanning Electron Microscope) or AFM (Atomic Force Microscope) based nanoprober systems on nanoscale devices in the modern semiconductor laboratory, we already have the capability to apply DC sweep for quasi-static I-V (Current-Voltage), high speed pulsing waveform for the dynamic I-V, and AC imposed for C-V (Capacitance-Voltage) analysis to the MOS devices. The available frequency is up to 100MHz at the current techniques. The specification of pulsed falling/rising time is around 10-1ns and the measurable capacitance can be available down to 50aF, for the nano-dimension down to 14nm. The mechanisms of dynamic applications are somewhat deeper than quasi-static current-voltage analysis. Regarding the operation, it is complicated for pulsing function but much easy for C-V. The effective FA (Failure Analysis) applications include the detection of resistive gate and analysis for abnormal channel doping issue.


2014 ◽  
Vol 10 ◽  
pp. 95-101
Author(s):  
A.S. Topolnikov

The paper presents the results of theoretical modeling of joined movement of pump rods and plunger pump and multiphase flow in a well for determination of dynamic loads on the polished rod of pumping unit. The specificity of the proposed model is the possibility of taking into account for complications in rod pump operating, such as leakage in valve steam, presence of gas and emulsion, incorrect fitting of plunger inside the cylinder pump. The satisfactory agreement of results of the model simulation with filed measurements are obtained.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


2021 ◽  
Vol 57 (1) ◽  
pp. 327-339
Author(s):  
Young-Hoon Jung ◽  
Min-Ro Park ◽  
Ki-O Kim ◽  
Jun-Woo Chin ◽  
Jung-Pyo Hong ◽  
...  

1994 ◽  
Vol 361 ◽  
Author(s):  
Chang Jung Kim ◽  
Dae Sung Yoon ◽  
Joon Sung Lee ◽  
Chaun Gi Choi ◽  
Won Jong Lee ◽  
...  

ABSTRACTThe (100), (111) and randomly oriented PZT thin films were fabricated on Pt/Ti/Coming 7059 glass using sol-gel method. The thin films having different orientation were fabricated by different drying conditions for pyrolysis. The preferred orientations of the PZT thin films were observed using XRD, rocking curves, and pole figures. The microstructures were investigated using SEM. The hysteresis loops and capacitance-voltage characteristics of the films were investigated using a standardized ferroelectric test system. The dielectric constant and current-voltage characteristics of the films were investigated using an impedance analyzer and pA meter, respectively. The films oriented in a particular direction showed superior electrical characteristics to the randomly oriented films.


2021 ◽  
pp. 41-46
Author(s):  
Evgeniy P. Krasnoperov ◽  
Valentin V. Guryev ◽  
Vasyli V. Sychugov ◽  
Dmitri S. Yashkin ◽  
Sergei V. Shavkin

The electrical characteristics of superconducting coils with non-insulated windings are studied. The procedures for measuring the parameters of uninsulated superconducting windings are described. In particular, the inductance is measured by voltage with a linear current input at a given rate. Attention is focused on the impossibility of correctly determining the inductance in a winding with an uninsulated superconductor in a normal state. It is noted that in a superconducting state at currents below the critical value, the inductance of the winding is comparable to the inductance with an insulated wire. The results of measurements of inductance, radial resistance, static current-voltage and magnetic characteristics of two tape coils with non-insulated superconducting windings, one of which had a soldered connection, are presented. Conditions for measuring the parameters of non-insulated superconducting windings are formulated when they are compared with insulated windings.


Sign in / Sign up

Export Citation Format

Share Document