scholarly journals Insights Gained fromP. falciparumCultivation in Modified Media

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Sanjay A. Desai

In vitrocultivation ofPlasmodium falciparum, the agent of severe human malaria, has enabled advances in basic research and accelerated the development of new therapies. Since the introduction ofin vitroparasite culture nearly 40 years ago, most workers have used a medium consisting of RPMI 1640 medium supplemented with lipids and hypoxanthine. While these standardized conditions yield robust parasite growth and facilitate comparison of results from different studies, they may also lead to implicit assumptions that limit future advances. Here, I review recent studies that used modified culture conditions to challenge these assumptions and explore parasite physiology. The findings are relevant to understandingin vivoparasite phenotypes and the prioritization of antimalarial targets.

2018 ◽  
Vol 3 ◽  
pp. 155 ◽  
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use controlled human malaria infection (CHMI) studies with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and extracted DNA will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0240874
Author(s):  
Brian M. Gruessner ◽  
Pamela J. Weathers

Dried-leaf Artemisia annua L. (DLA) antimalarial therapy was shown effective in prior animal and human studies, but little is known about its mechanism of action. Here IC50s and ring-stage assays (RSAs) were used to compare extracts of A. annua (DLAe) to artemisinin (ART) and its derivatives in their ability to inhibit and kill Plasmodium falciparum strains 3D7, MRA1252, MRA1240, Cam3.11 and Cam3.11rev in vitro. Strains were sorbitol and Percoll synchronized to enrich for ring-stage parasites that were treated with hot water, methanol and dichloromethane extracts of DLA, artemisinin, CoArtem™, and dihydroartemisinin. Extracts of A. afra SEN were also tested. There was a correlation between ART concentration and inhibition of parasite growth. Although at 6 hr drug incubation, the RSAs for Cam3.11rev showed DLA and ART were less effective than high dose CoArtem™, 8 and 24 hr incubations yielded equivalent antiparasitic results. For Cam3.11, drug incubation time had no effect. DLAe was more effective on resistant MRA-1240 than on the sensitive MRA-1252 strain. Because results were not as robust as observed in animal and human studies, a host interaction was suspected, so sera collected from adult and pediatric Kenyan malaria patients was used in RSA inhibition experiments and compared to sera from adults naïve to the disease. The sera from both age groups of malaria patients inhibited parasite growth ≥ 70% after treatment with DLAe and compared to malaria naïve subjects suggesting some host interaction with DLA. The discrepancy between these data and in-vivo reports suggested that DLA’s effects require an interaction with the host to unlock their potential as an antimalarial therapy. Although we showed there are serum-based host effects that can kill up to 95% of parasites in vitro, it remains unclear how or if they play a role in vivo. These results further our understanding of how DLAe works against the malaria parasite in vitro.


2019 ◽  
Vol 3 ◽  
pp. 155
Author(s):  
Melissa C. Kapulu ◽  
Patricia Njuguna ◽  
Mainga M. Hamaluba ◽  

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy.  We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo.  Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
SM Robledo ◽  
Y Upegui ◽  
J Murillo ◽  
B Rodriguez ◽  
LE Cuca

2021 ◽  
Author(s):  
Sheetal Saini ◽  
Rajinder Kumar ◽  
Rajeev K. Tyagi

Plasmodium falciparum, the most devastating human malaria parasite, confers higher morbidity and mortality. Although efforts have been made to develop an effective malaria vaccine, stage- and species-specific short-lived immunity crippled these efforts. Hence, antimalarial drug treatment becomes a mainstay for the treatment of malaria infection in the wake of the unavailability of an effective vaccine. Further, there has been a wide array of antimalarial drugs effective against various developmental stages of P. falciparum due to their different structures, modes of action, and pharmacodynamics as well as pharmacokinetics. The development of resistance against almost all frontline drugs by P. falciparum indicates the need for combination therapy (artemisinin-based combination therapy; ACT) to treat patients with P. falciparum. A higher pool of parasitemia under discontinuous in vivo artemisinin drug pressure in a developed humanized mouse allows the selection of artesunate resistant (ART-R) P. falciparum. Intravenously administered artesunate, using either single flash doses or a 2-day regimen, to the P. falciparum-infected human blood chimeric NOD/SCID.IL-2Rγ−/− immunocompromised (NSG) mice, with progressive dose increments upon parasite recovery, was the strategy deployed to select resistant parasites. Parasite susceptibility to artemisinins and other antimalarial compounds was characterized in vitro and in vivo. P. falciparum has shown to evolve extreme artemisinin resistance as well as co-resistance to antimalarial drugs. Overall, the present information shall be very useful in devising newer therapeutic strategies to treat human malaria infection.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sreenivasulu B. Reddy ◽  
Noemi Nagy ◽  
Caroline Rönnberg ◽  
Francesca Chiodi ◽  
Allan Lugaajju ◽  
...  

Abstract Background Plasmodium falciparum parasites cause malaria and co-exist in humans together with B-cells for long periods of time. Immunity is only achieved after repeated exposure. There has been a lack of methods to mimic the in vivo co-occurrence, where cells and parasites can be grown together for many days, and it has been difficult with long time in vitro studies. Methods and results A new method for growing P. falciparum in 5% CO2 with a specially formulated culture medium is described. This knowledge was used to establish the co-culture of live P. falciparum together with human B-cells in vitro for 10 days. The presence of B-cells clearly enhanced parasite growth, but less so when Transwell inserts were used (not allowing passage of cells or merozoites), showing that direct contact is advantageous. B-cells also proliferated more in presence of parasites. Symbiotic parasitic growth was verified using CESS cell-line and it showed similar results, indicating that B-cells are indeed the cells responsible for the effect. In malaria endemic areas, people often have increased levels of atypical memory B-cells in the blood, and in this assay it was demonstrated that when parasites were present there was an increase in the proportion of CD19 + CD20 + CD27 − FCRL4 + B-cells, and a contraction of classical memory B-cells. This effect was most clearly seen when direct contact between B-cells and parasites was allowed. Conclusions These results demonstrate that P. falciparum and B-cells undoubtedly can affect each other when allowed to multiply together, which is valuable information for future vaccine studies.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


Sign in / Sign up

Export Citation Format

Share Document