scholarly journals Cuminum cyminum Extracts as Eco-Friendly Corrosion Inhibitor for Mild Steel in Seawater

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. Sribharathy ◽  
Susai Rajendran

The inhibitive effect of Jeera (Cuminum cyminum) plant extracts on the corrosion of mild steel in an aqueous solution of seawater was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The stability of the inhibition efficiency of Jeera extracts was examined by weight-loss method. Potentiodynamic polarization curves indicated that the Jeera extract behaves as an anodic type inhibitor. EIS measurements showed that the dissolution process occurs under activation control. The corrosion rates of steel and the inhibition efficiencies of the extract obtained from impedance and polarization measurements were in good agreement. Inhibition was found to increase with an increasing concentration of the plant extract. The results obtained show that the Jeera extract could serve as an effective inhibitor for the corrosion of mild steel in seawater.

2010 ◽  
Vol 7 (2) ◽  
pp. 331-340
Author(s):  
Rinki Goel ◽  
Weqar A. Siddiqi ◽  
V. M. Chaubey ◽  
Bahar Ahmed

2[2-Oxo-phenyl hydrazinyl ether] benzamide (2BA) was synthesized, characterized and tested effective for corrosion inhibition of mild steel in 1 N H2SO4solution using galvanodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Polarization resistances calculated from the EIS measurements are in good agreement with those obtained from alternating current (AC) polarization measurements. The mild steel samples were also analyzed by Scanning Electron Microscopy (SEM). The result showed that 2BA is an excellent inhibitor for mild steel in acid medium. The inhibition was assumed to occurviaadsorption of the inhibitor molecule on the metal surface. In the 303-323K temperature range, the 2BA adsorption follows Langmuir isotherm model. The protection efficiency increases with increasing the inhibitor concentration in the range of 250-1000 ppm but slightly decreases with increasing temperature.


2019 ◽  
Vol 233 (12) ◽  
pp. 1713-1739
Author(s):  
Emad E. El-Katori ◽  
A.S. Fouda ◽  
Rahma R. Mohamed

AbstractHerein, the corrosion inhibition performance of mild steel (MS) in an acidic environment (1.0 M HCl) by the valerian extract has been studied via weight loss method (WL), potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The results illustrated that the inhibition efficiency, raised by the rise of the extract concentrations. The inhibitory mechanism depended on the creation of a stable plant extract-complex on the mild steel surface. Polarization studies confirmed that the extract behaved as a mixed type inhibitor. The corrosion inhibition was supposed to exist via adsorption of the main components of the valerian extract. Attenuated total reflection-infrared spectroscopy (ATR-IR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to investigate the change in the surface morphology and confirmed the corrosion inhibition mechanism. The complete study confirmed that the efficiency of the valerian extract as a safe, eco-friendly and exchange corrosion inhibition for mild steel in an acidic environment.


2014 ◽  
Vol 988 ◽  
pp. 3-7 ◽  
Author(s):  
Qi Li ◽  
Jian Li ◽  
Ling Tong Hu ◽  
Lei Zhu ◽  
Xiao Han ◽  
...  

This paper presents the investigation of 1-Phenyl-3-hydroxy-1,2,4-triazole as a new green Cu corrosion inhibitor for Electronic Circuit Board in the base electrolyte (containing 60ppm chloride ions,0.54M H2SO4 and 0.88M CuSO4).The inhibition action was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).The results show that the inhibition performance depends on the concentration of the inhibitor and the inhibition efficiency increases with increasing inhibitor concentration. Potentiodynamic polarization studies show that 1-Phenyl-3-hydroxy-1,2,4-triazole acts as the mixed-type inhibitor.The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization.


2014 ◽  
Vol 960-961 ◽  
pp. 229-233 ◽  
Author(s):  
Li Zheng ◽  
Ji Liu ◽  
Zhi Hua Tao ◽  
Wei He ◽  
Ding Jun Xiao ◽  
...  

This paper is mainly to discuss that myclobutanil as corrosion inhibitor and its corrosion efficiency were evaluated via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The potentiodynamic polarization measurements showed that the inhibition efficiency increases sharply with the increasing of concentration of myclobutanil, and the highest inhibition efficiency of the myclobutanil reached 84.3% at 3.2×10-4 mol/L in 1 mol/L HCl. The result also indicated that myclobutanil belongs to the mixed type inhibitor. The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization.


2010 ◽  
Vol 7 (4) ◽  
pp. 1133-1137 ◽  
Author(s):  
S. Subhashini ◽  
R. Rajalakshmi ◽  
A. Prithiba ◽  
A. Mathina

The role of seed extract ofCyamopsis tetragonalobaon corrosion mitigation of mild steel in 1 M HCl has been investigated by weight loss method and potentiodynamic polarization technique. Maximum inhibition efficiency ofCyamopsis tetragonalobain 1 M HCl was found to be 92%. Experimental results were fitted into Langmuir and Temkin adsorption isotherm to study the process of inhibition. The potentiodynamic polarization results reveal that the seed extract behaved like mixed type inhibitor.


2019 ◽  
Vol 9 (21) ◽  
pp. 4684 ◽  
Author(s):  
Sihem Lahrour ◽  
Abderrahim Benmoussat ◽  
Brahim Bouras ◽  
Asma Mansri ◽  
Lahcene Tannouga ◽  
...  

C-Mn steels, commonly employed in structural applications, are often exposed to near-neutral aerated environments and hence subjected to general corrosion. In broader contexts, for example during pickling, acidizing treatments, or acid-releasing processes, where steel comes in contact with more aggressive solutions, the use of corrosion inhibitors is a supplementary strategy to cathodic protection and/or coating. This work focuses on the C-Mn steel corrosion protection in the presence of HCl, either as process fluid or by product. In order to avoid the toxicological issues related to conventional synthetic products, a bio-copolymer containing glycerin-grafted starch, synthesized by modification of maize starch, was studied as a “green” corrosion inhibitor by the weight loss method and electrochemical techniques (open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy). Corrosion-related parameters, such as inhibitor concentration and temperature, were varied and optimized to characterize the corrosion process. Results showed that inhibition efficiency increases with increasing bio-copolymer concentration, reaching a maximum of 94%at the concentration of 300 mg L−1. The kinetic and thermodynamic parameters were determined and discussed. The obtained values of corrosion potential and corrosion current density, Ecorr and icorr, obtained by potentiodynamic polarization, are in agreement with the weight loss method. The corrosion current densities decrease when the concentration of the inhibitor increases.


2016 ◽  
Vol 12 (12) ◽  
pp. 4593-4613
Author(s):  
Rekha. S ◽  
Kannan. K ◽  
Gnanavel. S

2-amino-6-nitrobenzothiazole(ANBT) was used as an inhibitor for the corrosion of mild steel in acid medium since the inhibition efficiency was low for that compound, 2,6-diaminobenzothiazole (DABT) and N-(6-aminobenzo [d] thiazol-2-y1) benzamide(ABTB) was synthesized,  and characterized by FT-IR, H1NMR, and C13NMR.The synthesized compound was tested as a corrosion inhibitor for mild steel in 1N HCl solution using weight loss, Potentiodynamic polarization, and AC impedance techniques. The inhibition efficiency was studied at the different time, temperature and acid concentration by weight loss method. The values of activation energy and free energy of adsorption of these compounds were also calculated, which reveals that the inhibitor was adsorbed on the mild steel by physisorption mechanism. Adsorption obeys Langmuir and Temkin adsorption isotherms. The results obtained by weight loss method revealed that the compound performed as a better inhibitor for mild steel in 1N HCl. Potentiodynamic polarization studies showed that the inhibitor acts as a mixed type inhibitor.AC impedance studies revealed that the corrosion process was controlled by charge transfer process. Surface analysis was studied using SEM and FT-IR.


2018 ◽  
Vol 12 (1) ◽  
pp. 68-81 ◽  
Author(s):  
L. Chafki ◽  
E.H. Rifi ◽  
R. Touir ◽  
M. Ebn Touhami ◽  
Z. Hatim

Objective: In this study, electrochemical measurements were used to characterize Anhydrous Tricalcium Phosphate (ATP) as a corrosion inhibitor for mild steel in 1.0 M HCl. Method: The potentiodynamic polarization curves indicated that the ATP reacts as an anodic type inhibitor. In addition, it has been found that the electrochemical impedance confirms the inhibitor character of ATP obtained by the potentiodynamic polarization curves where the inhibition efficiency increases by its concentration to reach a maximum of 93.79 % at 10-4 M. The temperature solution influence indicated that the corrosion rate increases with temperature while the inhibitor acts actively. Thermodynamic adsorption and activation parameters indicated that the ATP acts by physical adsorption on the metallic surface with an endothermic process of metal dissolution. Result: Additionally, it was found that the adsorption of ATP molecules obeyed to the Langmuir isotherm. Surface analyses via scanning electron microscopy (SEM) was used to investigate the morphology of mild steel before and after immersion in 1.0 M HCl solution without and with 10-4 M of ATP. It is revealed that the ATP  acted by the formation of a protective layer on the mild steel.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. Ademar ◽  
J. G. Gonzalez-Rodriguez ◽  
J. Uruchurtu ◽  
J. Porcayo-Calderon ◽  
V. M. Salinas-Bravo ◽  
...  

The effect of 2.5 at.% Cr, Ti, and Ag on the corrosion behavior of Fe40Al intermetallic alloy in KCl-ZnCl2(1 : 1 M) at 670°C has been evaluated by using electrochemical techniques. Techniques included potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) measurements. Results have shown that additions of both Cr and Ti were beneficial to the alloy, since they decreased its corrosion rate, whereas additions of Ag was detrimental, since its additions increased the corrosion rate, although the alloy was passivated by adding Ag or Cr. The best corrosion performance was obtained with the addition of Cr, whereas the highest corrosion rate was obtained by adding Ag. This is explained in terms of the stability of the corrosion products formed film.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Glory Tharial Xavier ◽  
Brindha Thirumalairaj ◽  
Mallika Jaganathan

The corrosion inhibition of mild steel in 1 N sulphuric acid solution by 2,6-diphenylpiperidin-4-ones with various substituents at 3- and 3,5-positions (01–06) has been tested by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopic methods, and FTIR and UV absorption spectra. The surface morphology of the mild steel specimen has been analyzed by SEM. The effect of temperature (300 to 323 ± 1 K) on the corrosion behavior of mild steel in the presence of the inhibitors (01–06) was studied using weight loss techniques. The effect of anions (Cl−, Br−, and I−) on the corrosion behavior of mild steel in the presence of the same inhibitors was also studied by weight loss method and the synergism parameters were calculated. The adsorption characteristics of the inhibitors have been determined from the results.


Sign in / Sign up

Export Citation Format

Share Document