Electrochemical Study of Corrosion Inhibition on Copper in Base Electrolyte by 1-Phenyl-3-Hydroxy-1,2,4-Triazole

2014 ◽  
Vol 988 ◽  
pp. 3-7 ◽  
Author(s):  
Qi Li ◽  
Jian Li ◽  
Ling Tong Hu ◽  
Lei Zhu ◽  
Xiao Han ◽  
...  

This paper presents the investigation of 1-Phenyl-3-hydroxy-1,2,4-triazole as a new green Cu corrosion inhibitor for Electronic Circuit Board in the base electrolyte (containing 60ppm chloride ions,0.54M H2SO4 and 0.88M CuSO4).The inhibition action was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).The results show that the inhibition performance depends on the concentration of the inhibitor and the inhibition efficiency increases with increasing inhibitor concentration. Potentiodynamic polarization studies show that 1-Phenyl-3-hydroxy-1,2,4-triazole acts as the mixed-type inhibitor.The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization.

2014 ◽  
Vol 556-562 ◽  
pp. 141-144
Author(s):  
Zhi Hua Tao ◽  
Bin Leng ◽  
Chong Wang ◽  
Ding Jun Xiao ◽  
Ze Tan ◽  
...  

The eleetronic material, or even the whole equipments may be destroyed by very slight corrosion, so it is important to study the corrosion mechanism and corrosion protections. The Cyproconazole as a Cu corrosion inhibitor for Electronic Circuit Board in the base electrolyte (containing 70 ppm chloride ions, 0.54 mol/L H2SO4and 0.8 mol/L CuSO4) was investigated using polarization curves and AC impedance. The results showed that the inhibition performance of the Cyproconazole depended on the concentration of the inhibitor and the highest inhibition efficiency of the Cyproconazole reached 99.9% at 1×10-3mol/L in the base electrolyte. The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization. Potentiodynamic polarization studies clearly revealed that Cyproconazole adsorption acted essentially as the mixed-type inhibitor.


Author(s):  
A. H. EL-ASKALANY ◽  
S. I. MOSTAFA ◽  
A. M. EID

The inhibitive action of Saponinic extract of both Zygophylium album and Zygophylium Egyptian leaves which could serve as eco-friendly materials was investigated on the corrosion of N80 carbon steel in 1 M HCl solution. The techniques employed for the study were weight loss measurements. potentiodynamic polarization, electrochemical frequency modulation (EFM), and electrochemical impedance spectroscopy (EIS). The results obtained show that these extracts could serve as an effective inhibitor for N80 carbon steel. The percentage inhibition increases with increasing concentration of the inhibitor at 25 °C The percentage inhibitor efficiency above 90% was obtained at a concentration of 700 ppm for both extracts. The corrosion rates of steel and inhibitive efficiencies obtained from impedance and polarization measurements were in good agreement with those obtained from weight loss measurements. Potentiodynamic polarization studies clearly reveal that both extracts act as mixed-type inhibitors The study shows that the inhibition efficiency decreased with the temperature rise of the medium. Heat of adsorption and thermodynamic parameters and indicated that the adsorption process is mainly controlled by the physical adsorption process.


2014 ◽  
Vol 960-961 ◽  
pp. 229-233 ◽  
Author(s):  
Li Zheng ◽  
Ji Liu ◽  
Zhi Hua Tao ◽  
Wei He ◽  
Ding Jun Xiao ◽  
...  

This paper is mainly to discuss that myclobutanil as corrosion inhibitor and its corrosion efficiency were evaluated via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The potentiodynamic polarization measurements showed that the inhibition efficiency increases sharply with the increasing of concentration of myclobutanil, and the highest inhibition efficiency of the myclobutanil reached 84.3% at 3.2×10-4 mol/L in 1 mol/L HCl. The result also indicated that myclobutanil belongs to the mixed type inhibitor. The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3679
Author(s):  
Ismat H. Ali

This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. Sribharathy ◽  
Susai Rajendran

The inhibitive effect of Jeera (Cuminum cyminum) plant extracts on the corrosion of mild steel in an aqueous solution of seawater was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The stability of the inhibition efficiency of Jeera extracts was examined by weight-loss method. Potentiodynamic polarization curves indicated that the Jeera extract behaves as an anodic type inhibitor. EIS measurements showed that the dissolution process occurs under activation control. The corrosion rates of steel and the inhibition efficiencies of the extract obtained from impedance and polarization measurements were in good agreement. Inhibition was found to increase with an increasing concentration of the plant extract. The results obtained show that the Jeera extract could serve as an effective inhibitor for the corrosion of mild steel in seawater.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nimmy Kuriakose ◽  
Joby Thomas Kakkassery ◽  
Vinod P. Raphael ◽  
Shaju K. Shanmughan

The corrosion inhibition efficiency of thiophene-2-carbaldehyde tryptophan (T2CTRY) on mild steel (MS) in 1 M HCl solution has been investigated and compared using weight loss measurements, electrochemical impedance spectroscopy, and potentiodynamic polarization analysis. The Schiff base exhibited very good corrosion inhibition on mild steel in HCl medium and the inhibition efficiency increased with the increase in concentration of the inhibitor. The adsorption of the inhibitor on the surface of the corroding metal obeys Freundlich isotherm. Thermodynamic parameters (Kads, ΔG ads0) were calculated using adsorption isotherm. Polarization studies revealed that T2CTRY acts as a mixed type inhibitor. A maximum of 96.2% inhibition efficiency was achieved by EIS studies at a concentration of 1 mM.


2013 ◽  
Vol 787 ◽  
pp. 30-34
Author(s):  
Zhi Hua Tao ◽  
Shou Xu Wang ◽  
Lin Xian Ji ◽  
Li Zheng ◽  
Wei He

The guanine as a corrosion inhibitor for copper in 0.5 mol/L sulfuric acid solution was investigated using weight loss experiment, polarization curves, AC impedance. The results showed that the inhibition performance of the guanine depended on the concentration of the inhibitor and the highest inhibition efficiency of the guanine reached 92.2% at 1×10-3mol/L in 0.5 mol/L sulfuric acid solution. The potentiodynamic polarization measurements showed that both cathodic and anodic processes of copper corrosion were suppressed and the guanine acts essentially as a mixed-type inhibitor. The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization. The adsorption of the guanine is found to obey Langmuir adsorption isotherm and belong to physisorption.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


2010 ◽  
Vol 7 (2) ◽  
pp. 331-340
Author(s):  
Rinki Goel ◽  
Weqar A. Siddiqi ◽  
V. M. Chaubey ◽  
Bahar Ahmed

2[2-Oxo-phenyl hydrazinyl ether] benzamide (2BA) was synthesized, characterized and tested effective for corrosion inhibition of mild steel in 1 N H2SO4solution using galvanodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Polarization resistances calculated from the EIS measurements are in good agreement with those obtained from alternating current (AC) polarization measurements. The mild steel samples were also analyzed by Scanning Electron Microscopy (SEM). The result showed that 2BA is an excellent inhibitor for mild steel in acid medium. The inhibition was assumed to occurviaadsorption of the inhibitor molecule on the metal surface. In the 303-323K temperature range, the 2BA adsorption follows Langmuir isotherm model. The protection efficiency increases with increasing the inhibitor concentration in the range of 250-1000 ppm but slightly decreases with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document