scholarly journals Facile and Clean Solution Synthesis of Large-Scale ZnO Nanorods Assisted with Aliquat 336

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Qiang Huang ◽  
Jianping Liu

A facile and clean fabrication of large-scale ZnO nanorods assisted with Aliquat 336 using aqueous chemical method is reported. As prepared, samples were characterized using XRD, EDS, SEM, TEM, and HRTEM. The optical properties were measured by Raman spectroscopy and room temperature photoluminescence spectra.

2013 ◽  
Vol 669 ◽  
pp. 335-339
Author(s):  
Xue Yun Song ◽  
Xiu Xi Wang ◽  
Xiang Hua Zeng ◽  
Yong Zhang ◽  
Yi Pei Hu ◽  
...  

Zn1-xCdxS alloy nanoparticles have been prepared via solvothermal approach. The effects of the mole fraction of Cd on the nanoparticles’ structure, size and photoluminescence spectra were investigated. It shows that with increase in mole fraction of Cd, the lattice structure of Zn1-xCdxS changes from cubic to hexagonal, and the size of these nanoparticles varied within 6-40nm. Room temperature photoluminescence measurements show an intense red shift from 518nm to 662nm. And the band gap energies from 2.3 to 3.54eV can be realized for the Zn1-xCdxS nanopartices. Furthermore, it is found that the conversion of Methylene Blue (MB) using Zn0.6Cd0.4S as the photocatalyst was up to 97% after 2h of irradiation.


2008 ◽  
Vol 8 (3) ◽  
pp. 1101-1109 ◽  
Author(s):  
Yichun Liu ◽  
Yanhong Tong

Recent studies on the growth of ZnO nanostructures and their optical properties were reviewed. Using different methods, a variety of ZnO nanostructures, including quantum dots nanotowers, nanotubes, nanorods, nanowires, and nanosheets, displaying zero, one, and two dimensions, have been synthesized. The growth of ZnO low-dimensional nanostructures has been demonstrated. Their optical properties have been studied by means of room-temperature photoluminescence spectra, low-temperature photoluminescence spectra, temperature-dependent photoluminescence spectra, and pressure-dependent photoluminescence spectra. The optical properties can be adjusted by the surface features of ZnO low-dimensional nanostructures. The strong exciton emission has been observed in some nanostructures, showing promising potential in nanodevice applications.


1990 ◽  
Vol 201 ◽  
Author(s):  
Honglie Shen ◽  
Genqing Yang ◽  
Zuyao Zhou ◽  
Guanqun Xia ◽  
Shichang Zou

AbstractDual implantations of Si+ and P+ into InP:Fe were performed both at 200°C and room temperature. Si+ ions were implanted by 150keV with doses ranging from 5×1013 /cm2 to 1×1015 /cm2, while P+ ions were implanted by 110keV. 160keV and 180keV with doses ranging from 1×l013 /cm2 to 1×1015 /cm2. Hall measurements and photoluminescence spectra were used to characterize the silicon nitride encapsulated annealed samples. It was found that enhanced activation can be obtained by Si+ and P+ dual implantations. The optimal condition for dual implantations is that the atomic distribution of implanted P overlaps that of implanted si with the same implant dose. For a dose of 5×l014 /cm2, the highest activation for dual implants is 70% while the activation for single implant is 40% after annealing at 750°C for 15 minutes. PL spectrum measurement was carried out at temperatures from 11K to 100K. A broad band at about 1.26eV was found in Si+ implanted samples, of which the intensity increased with increasing of the Si dose and decreased with increasing of the co-implant P+ dose. The temperature dependence of the broad band showed that it is a complex (Vp-Sip) related band. All these results indicate that silicon is an amphoteric species in InP.


2019 ◽  
Vol 495 ◽  
pp. 143615 ◽  
Author(s):  
Amaresh Das ◽  
Shuvaraj Ghosh ◽  
Ayon Das Mahapatra ◽  
Debdulal Kabiraj ◽  
Durga Basak

2017 ◽  
Vol 49 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Milica Petrovic ◽  
Martina Gilic ◽  
Jovana Cirkovic ◽  
Maja Romcevic ◽  
Nebojsa Romcevic ◽  
...  

Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material.


2012 ◽  
Vol 554-556 ◽  
pp. 70-75
Author(s):  
Hui Juan Tian ◽  
Jun Bo Xu ◽  
Ya Jun Tian ◽  
Hao Wen

The morphological and optical properties of ZnO nanocrystals prepared by thermal evaporation of Zn powders were studied at both upstream and downstream under different O2flow rates. The morphological evolution was observed by scanning electron microscopy. With O2flow rates changing from 0.25 sccm to 1 sccm, the caps of the ZnO nanonails become bigger and the stems gradually disappear at upstream, and the diameters at the top of ZnO nanorods become thicker and the length become longer at downstream. Room temperature PL study shows that UV emission is relatively enhanced with increasing O2flow rates. Computational fluid dynamics simulation was performed, which indicates that the morphological evolution of the ZnO structures results from the competition between the axial growth and the radial growth based on different O2and Zn vapor partial pressure.


2007 ◽  
Vol 124-126 ◽  
pp. 1597-1600
Author(s):  
Hyoun Woo Kim ◽  
Sun Keun Hwang ◽  
Won Seung Cho ◽  
Tae Gyung Ko ◽  
Seung Yong Choi ◽  
...  

This paper reports the fabrication of indium oxide (In2O3) films using a triethylindium and oxygen mixture. The deposition has been carried out on TiAlN substrates (200-350°C). We have established the correlation between the substrate temperature and the structural properties. The films deposited at 300-350°C were polycrystalline, whereas those deposited at 200°C was close to amorphous. XRD analysis and SEM images indicated that the films grown at 350°C had grained structures with the (222) preferred orientation. The room-temperature photoluminescence spectra of the In2O3 films exhibited a visible light emission.


1994 ◽  
Vol 340 ◽  
Author(s):  
E.L. Allen ◽  
F.X. Zach ◽  
K.M. Yu ◽  
E.D. Bourret

ABSTRACTWe report on the effectiveness of proximity caps and PECVD Si3N4 caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 × 1014 cm−2 N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200°C and 850°C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing time and temperature may be more important than capping material in determining the optical properties. The effects of various caps, implant and annealing temperature are discussed in terms of their effect on the photoluminescence spectra.


Sign in / Sign up

Export Citation Format

Share Document