scholarly journals Preparation and Characterization of Promoted Fe-V/SiO2Nanocatalysts for Oxidation of Alcohols

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hamid Reza Rafiee ◽  
Mostafa Feyzi ◽  
Fatanh Jafari ◽  
Banafsheh Safari

A series of SiO2supported iron-vanadium catalysts were prepared using sol-gel and wetness impregnation methods. This research investigates the effects of V and Cu on the structure and morphology of Fe/SiO2catalysts. The SiO2supported catalyst with the highest specific surface area and pore volume was obtained when it is containing 40 wt.% Fe, 15 wt.% V, and 2 wt.% Cu. Characterization of prepared catalysts was carried out by powder X-ray diffraction (XRD), scanning electron microcopy (SEM), vibrating sample magnetometry (VSM), Fourier transform infrared (FT-IR) spectrometry, temperature program reduction (TPR), N2physisorption, and thermal analysis methods such as thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The Fe-V/SiO2catalyst promoted with 2 wt.% of Cu exhibited typical ferromagnetic behavior at room temperature with a saturation magnetization value of 11.44 emu/g. This character of catalyst indicated great potential for application in magnetic separation technologies. The prepared catalyst was found to act as an efficient recoverable nanocatalyst for oxidation reaction of alcohols to aldehydes and ketones in aqueous media under mild condition. Moreover, the catalyst was reused five times without significant degradation in catalytic activity and performance.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 259
Author(s):  
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Wojciech A. Pisarski

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6–3)) and Eu3+ (5D0 → 7FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
J. L. Feng ◽  
C. Y. Yue ◽  
K. S. Chian

AbstractThis project aims to develop and characterize a series of bismaleimide (BMI) polymers based on maleic anhydride and aliphatic-ether diamines. The effects of varying the chain length of aliphatic-ether diamines on the resultant bismaleimide systems were evaluated so that their suitability for microelectronics applications could be evaluated. The synthetic reaction and properties of the bismaleimide materials were investigated using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermo- Gravimetric Analysis (TGA), Dielectric Thermal Analysis (DEA) and rheometry. Results showed that thermal, dielectric and rheological properties were all affected by the main chain length of BMI. The magnitude of the dielectric constant at 100 kHz increases with the increasing chain length. The curing peak temperature, curing heat and degradation temperature of BMI, all decrease with the increasing chain length.


2011 ◽  
Vol 23 (7) ◽  
pp. 513-517 ◽  
Author(s):  
Mohsen Ghorbani ◽  
Mohammad Soleimani Lashkenari ◽  
Hossein Eisazadeh

This study investigated the preparation and properties of polyaniline/silver (PAn/Ag2O) nanocomposite in aqueous media by chemical polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidant. The products were investigated in terms of morphology, chemical structure, thermal stability and thermal degradation using scanning electron microscopy, Fourier transform infrared, thermal gravimetric analysis and differential scanning calorimetry, respectively. The results indicated that the properties of products were dependent on the nanocomposite structure.


2012 ◽  
Vol 512-515 ◽  
pp. 1429-1433
Author(s):  
Xun Lao ◽  
Xiao Yan ◽  
Jiao Xie ◽  
Ya Li Li

The carbodiimide-based non-oxide sol-gel process is a novel route to non-oxide nitride and carbide ceramics. This process has been applied to fabricate ternary or binary silicon based nitride and carbide ceramics. Based on this non-oxide sol-gel process, iron carbide and nitride have been fabricated by reaction of iron trichloride with bis(trimethylsilyl)carbodiimide to form FeCN gel followed by pyrolysis in argon flow at different temperatures. The iron carbide material obtained at 700 °C exhibits hard ferromagnetic properties whereas α-iron along with iron nitride formed at 1300 °C shows soft ferromagnetic properties. Therefore, iron carbide and nitride ceramics with controlled magnetic properties can be obtained along this novel non-oxygen sol-gel process by controlled pyrolysis. The pyrolysis behavior was investigated based on thermal gravimetric analysis coupled with differential scanning calorimetry. The phase structures of the iron carbide and nitride are identified by X-ray diffraction and the magnetic properties of the materials are measured by magnetometer.


2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Hamada Abdel-Razik

AbstractSynthesis, characterization and application of diaminomaleonitrile (DAMN)-functionalized polystyrene grafts were studied. Dibenzoyle peroxide (BP) was used as an initiator. Optimum conditions for grafting were found to be c(DAMN) = 0.5 M, c(BP) = 0.016 M, θ = 85 °C and t = 4 h. Water uptake of the polystyrene graft membranes was found to increase with the increase of the grafting yield. The chemical structure, thermal characteristics and thermal stability of the obtained membranes were investigated by means of FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. Polystyrene graft membrane with the degree of grafting of up to 96 % was found to be useful for the pervaporation separation of phenol/water mixtures.


2012 ◽  
Vol 488-489 ◽  
pp. 506-510 ◽  
Author(s):  
Sikander Rafiq ◽  
Zakaria Man ◽  
Abdulhalim Maulud ◽  
Nawshad Muhammad ◽  
Saikat Maitra

Composite membranes were prepared by incorporating inorganic silica nanoparticles into blends of polysulfone/polyimide (PSF/PI) membranes via sol-gel route. Morphological structures of the developed membranes were carried out by scanning electron microscopy (SEM). Spectroscopic analysis of the hybrid membranes were done by fourier transform infrared spectroscopy (FTIR) analysis. Differential scanning calorimetry (DSC) analysis shows that the glass transition temperature (Tg) increased from 209oC to 238oC in the hybrid membranes followed by thermogravimetric analysis (TGA) that showed significant improvement in thermal stability of the developed membranes.


2018 ◽  
Vol 775 ◽  
pp. 383-389
Author(s):  
Dominique Jan Bacalso Tan ◽  
Bryan B. Pajarito

An adsorbent for post-combustion carbon dioxide capture was prepared using low-cost and sustainable natural zeolite coated with chitosan. An optimum adsorbent was identified from 3 levels of particle size of natural zeolite and 10 levels of chitosan loading. The optimum adsorbent was characterized using infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis and differential scanning calorimetry. The chemical and thermal properties of the adsorbent indicated successful coating of chitosan on natural zeolite. The adsorbent registered competitive dynamic adsorption capacity of 0.81 mmol g-1 with good retention, at least, up to 5 adsorption-desorption cycles.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1955 ◽  
Author(s):  
Karina del Ángel-Sánchez ◽  
César I. Borbolla-Torres ◽  
Luis M. Palacios-Pineda ◽  
Nicolás A. Ulloa-Castillo ◽  
Alex Elías-Zúñiga

This paper focuses on developing, fabricating, and characterizing composite polycaprolactone (PCL) membranes reinforced with titanium dioxide nanoparticles (NPs) elaborated by using two solvents; acetic acid and a mixture of chloroform and N,N-dimethylformamide (DMF). The resulting physical, chemical, and mechanical properties of the composite materials are studied by using experimental characterization techniques such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) analysis, contact angle (CA), uniaxial and biaxial tensile tests, and surface roughness measurements. Experimental results show that the composite material synthesized by sol-gel and chloroform-DMF has a better performance than the one obtained by using acetic acid as a solvent.


Sign in / Sign up

Export Citation Format

Share Document