scholarly journals In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chiara Garrovo ◽  
Natascha Bergamin ◽  
Dave Bates ◽  
Daniela Cesselli ◽  
Antonio Paolo Beltrami ◽  
...  

Stem cells are characterized by the ability to renew themselves and to differentiate into specialized cell types, while stem cell therapy is believed to treat a number of different human diseases through either cell regeneration or paracrine effects. Herein, an in vivo and ex vivo near infrared time domain (NIR TD) optical imaging study was undertaken to evaluate the migratory ability of murine adipose tissue-derived multipotent adult stem cells [mAT-MASC] after intramuscular injection in mice. In vivo NIR TD optical imaging data analysis showed a migration of DiD-labelled mAT-MASC in the leg opposite the injection site, which was confirmed by a fibered confocal microendoscopy system. Ex vivo NIR TD optical imaging results showed a systemic distribution of labelled cells. Considering a potential microenvironmental contamination, a cross-validation study by multimodality approaches was followed: mAT-MASC were isolated from male mice expressing constitutively eGFP, which was detectable using techniques of immunofluorescence and qPCR. Y-chromosome positive cells, injected into wild-type female recipients, were detected by FISH. Cross-validation confirmed the data obtained by in vivo/ex vivo TD optical imaging analysis. In summary, our data demonstrates the usefulness of NIR TD optical imaging in tracking delivered cells, giving insights into the migratory properties of the injected cells.

2011 ◽  
Vol 52 (9) ◽  
pp. 978-988 ◽  
Author(s):  
Hitoshi Nakayama ◽  
Tomoyuki Kawase ◽  
Kazuhiro Okuda ◽  
Larry F Wolff ◽  
Hiromasa Yoshie

Background In a previous study using a rodent osteosarcoma-grafted rat model, in which cell-dependent mineralization was previously demonstrated to proportionally increase with growth, we performed a quantitative analysis of mineral deposit formation using 99mTc-HMDP and found some weaknesses, such as longer acquisition time and narrower dynamic ranges (i.e. images easily saturated). The recently developed near-infrared (NIR) optical imaging technique is expected to non-invasively evaluate changes in living small animals in a quantitative manner. Purpose To test the feasibility of NIR imaging with a dual-channel system as a better alternative for bone scintigraphy by quantitatively evaluating mineralization along with the growth of osteosarcoma lesions in a mouse-xenograft model. Material and Methods The gross volume and mineralization of osteosarcoma lesions were evaluated in living mice simultaneously with dual-channels by NIR dye-labeled probes, 2-deoxyglucose (DG) and pamidronate (OS), respectively. To verify these quantitative data, retrieved osteosarcoma lesions were then subjected to ex-vivo imaging, weighing under wet conditions, microfocus-computed tomography (μCT) analysis, and histopathological examination. Results Because of less scattering and no anatomical overlapping, as generally shown, specific fluorescence signals targeted to the osteosarcoma lesions could be determined clearly by ex-vivo imaging. These data were well positively correlated with the in-vivo imaging data ( r > 0.8, P < 0.02). Other good to excellent correlations ( r > 0.8, P < 0.02) were observed between DG accumulation and tumor gross volume and between OS accumulation and mineralization volume. Conclusion This in-vivo NIR imaging technique using DG and OS is sensitive to the level to simultaneously detect and quantitatively evaluate the growth and mineralization occuring in this type of osteosarcoma lesions of living mice without either invasion or sacrifice. By possible mutual complementation, this dual imaging system might be useful for accurate diagnosis even in the presence of overlapping tissues.


2018 ◽  
Vol 143 (3) ◽  
pp. 288-298 ◽  
Author(s):  
Wendy A. Wells ◽  
Michael Thrall ◽  
Anastasia Sorokina ◽  
Jeffrey Fine ◽  
Savitri Krishnamurthy ◽  
...  

The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.


2007 ◽  
Vol 30 (6) ◽  
pp. 501-512 ◽  
Author(s):  
L. Gotloib ◽  
L.C. Gotloib ◽  
V. Khrizman

At the dawn of the 21st century, classical curative medicine is being challenged by the fact that efforts to fight and prevent not a few diseases, are in many circumstances, beyond the power of the pharmacological armamentarium of the medical profession. On the other hand, replacement of lost function by mechanical or biophysical devices, or even by organ transplantation, prolongs life but generally derives in new and, at times, unsolvable problems. Regenerative therapy using stem cells began a revolutionary trend that may well change both the therapeutic approach to not a few of the diseases resulting from failing organs, as well as the fate and quality of life of millions of patients. The presence of pluripotent mesenchymal cells in the mesothelial monolayer as well as in the submesothelial connective tissue raises the possibility of using the peritoneal mesothelium in regenerative therapies. This perception of the problem is also based on observations made in humans as well as in laboratory animals showing bone, bone marrow, cartilaginous tissue, glomerular-like structures and creation of blood conducts, pathological situations (mesothelioma, sclerosing peritonitis), or after in vivo or ex vivo experimental interventions. The main concept emerging from this information is that peritoneal mesothelial cells are endowed with such a degree of plasticity that, if placed in the appropriate micro-environment, they have a remarkable potential to generate other mesenchymal-derived cell lines. Intensive research is required to define the best environmental conditions to take advantage of this plasticity and make the peritoneal mesothelium an actual option to be applied in regenerative medicine.


2010 ◽  
Vol 22 (1) ◽  
pp. 357 ◽  
Author(s):  
S. M. Wilson ◽  
E. Monaco ◽  
M. S. Goldwasser ◽  
S. G. Clark ◽  
W. L. Hurley ◽  
...  

Bone marrow is one current source of adult stem cells for therapeutic purposes; however, the magnitude and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative. Numerous in vitro studies have been conducted to determine how these cells act in vitro, but it is imperative to determine the vast abilities of these cells in vivo. The objective of this study was to evaluate in vivo migration and bone healing ability after transplanting adipose-derived stem cells (ADSC) in a swine model. Adipose-derived stem cells were isolated from subcutaneous adipose tissue of adult Yorkshire pigs and cultured in vitro. At 80 to 90% confluence/passage 3, the cells were trypsinized and labeled in suspension with carboxyfluorescein succinimidyl ester (CFDA-SE). This project included 20 pigs weighing between 63.5 and 81.7 kg. Bilateral mandibular osteoectomies with 10-mm defects were performed on each pig. Of the 20 pigs, half received a treatment of 2.5 million CFDA-SE labeled stem cells administered directly into each defect (DI), and the remaining half received a treatment of approximately 5 million CFDA-SE labeled stem cells through an ear vein injection via catheter (EVI). The time points were 1 h and 2 and 4 wk, with 2 pigs per time with the DI and EVI treatments. Pigs were slaughtered at each time, and spleen, liver, lung, kidney, ear vein, blood, and mandible tissues were collected. Blood samples were collected from the jugular vein with EDTA and processed via flow cytometry after collection. Tissues were fixed in 10% buffered formalin for histology. Fluorescent microscopy (CFDA-SE excitation/emission is 492/517 nm) has confirmed that transplanted ADSC do indeed migrate to a site of injury or trauma. Labeled cells were also present in blood collected from the 1-h time point group. Currently, we have not seen the presence of labeled ADSC in the other tissues (spleen, liver, lung, and kidney) after the 1-h time point. We did observe that ADSC administered by DI and EVI were able to significantly heal and regenerate bone defects within 4 wk post-surgery (P < 0.05, ANOVA with F-test), in contrast to bone defects in pigs that did not receive cell injections (control). Evidence of ADSC-related healing and bone regeneration was evident by gross visualization, dual-energy x-ray absorptiometry (DXA) and micro computer tomography (microCT) analysis. The clinical implications of these results are significant for treating many diseases in which inflammation or defects exist, such as cardiac disease, neurological disease, or traumatic injuries to both soft and hard tissue. If the adult stem cells can be harvested from fat, encouraged to produce bone or cartilage, and then reinserted into defects, treatment protocols for trauma victims could be developed that would reduce the need for alternate harvesting techniques for bone. This work was support by a grant from the Illinois Regenerative Medicine Institute (IDPH # 63080017).


2008 ◽  
Vol 7 (6) ◽  
pp. 7290.2008.00025 ◽  
Author(s):  
Abedelnasser Abulrob ◽  
Eric Brunette ◽  
Jacqueline Slinn ◽  
Ewa Baumann ◽  
Danica Stanimirovic

The blood-brain barrier (BBB) disruption following cerebral ischemia can be exploited to deliver imaging agents and therapeutics into the brain. The aim of this study was (a) to establish novel in vivo optical imaging methods for longitudinal assessment of the BBB disruption and (b) to assess size selectivity and temporal patterns of the BBB disruption after a transient focal ischemia. The BBB permeability was assessed using in vivo time domain near-infrared optical imaging after contrast enhancement with either free Cy5.5 (1 kDa) or Cy5.5 conjugated with bovine serum albumin (BSA) (67 kDa) in mice subjected to either 60- or 20-minute transient middle cerebral artery occlusion (MCAO) and various times of reperfusion (up to 14 days). In vivo imaging observations were corroborated by ex vivo brain imaging and microscopic analyses of fluorescent tracer extravasation. The in vivo optical contrast enhancement with Cy5.5 was spatially larger than that observed with BSA-Cy5.5. Longitudinal studies after a transient 20-minute MCAO suggested a bilateral BBB disruption, more pronounced in the ipsilateral hemisphere, peaking at day 7 and resolving at day 14 after ischemia. The area differential between the BBB disruption for small and large molecules could potentially be useful as a surrogate imaging marker for assessing perinfarct tissues to which neuroprotective therapies of appropriate sizes could be delivered.


Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S74-S74
Author(s):  
Shengli Mi ◽  
Zhongying Dou ◽  
Qingmei Zhao ◽  
Xueyi Yang ◽  
Lei Qu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Solmaz AghaAmiri ◽  
Jo Simien ◽  
Alastair M. Thompson ◽  
Julie Voss ◽  
Sukhen C. Ghosh ◽  
...  

Background. Although therapeutic advances have led to enhanced survival in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer, detection of residual disease remains challenging. Here, we examine two approved anti-HER2 monoclonal antibodies (mAbs), trastuzumab and pertuzumab, as potential candidates for the development of immunoconjugates for fluorescence-guided surgery (FGS). Methods. mAbs were conjugated to the near-infrared fluorescent (NIRF) dye, IRDye800, and for quantitative in vitro assessment, to the radiometal chelator, desferrioxamine, to enable dual labeling with 89Zr. In vitro binding was evaluated in HER2-overexpressing (BT474, SKBR3) and HER2-negative (MCF7) cell lines. BT474 and MCF7 xenografts were used for in vivo and ex vivo fluorescence imaging. Results. In vitro findings demonstrated HER2-mediated binding for both fluorescent immunoconjugates and were in agreement with radioligand assays using dual-labeled immunoconjugates. In vivo and ex vivo studies showed preferential accumulation of the fluorescently-labeled mAbs in tumors and similar tumor-to-background ratios. In vivo HER2 specificity was confirmed by immunohistochemical staining of resected tumors and normal tissues. Conclusions. We showed for the first time that fluorescent trastuzumab and pertuzumab immunoconjugates have similar NIRF imaging performance and demonstrated the possibility of performing HER2-targeted FGS with agents that possess distinct epitope specificity.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Eric A Osborn ◽  
Giovanni J Ughi ◽  
Johan W Verjans ◽  
Edouard Gerbaud ◽  
Richard A Takx ◽  
...  

Background: Atheroma inflammation impairs plaque stability and promotes plaque progression and complications. However, it is unknown how measures of plaque biology relate to changes in plaque burden, and whether plaque biology can independently predict plaque progression in coronary-sized arteries. This study evaluated the ability of intravascular near-infrared fluorescence (NIRF) biological imaging to inform experimental atheroma progression in vivo. Methods: Atherosclerosis was induced by balloon-injury in the aorta of 14 cholesterol-fed rabbits. Serial intravascular ultrasound (IVUS) and dual-modality intravascular NIRF - optical coherence tomography (OCT) imaging was performed following injection of a NIRF molecular imaging agent of plaque inflammatory protease activity (ProSense VM110; n=7), or impaired plaque endothelial permeability (indocyanine green (ICG); n=7). Plaque progression was further assessed by IVUS change in plaque burden. Regression analysis was used to evaluate the association of NIRF with plaque progression. In vivo imaging results were corroborated by ex vivo fluorescence reflectance imaging, fluorescence microscopy, and histopathology. Results: Quantitative analysis of 1,811 axial images spanning individual plaques, the change in NIRF plaque biological signals from 8 to 12 weeks strongly correlated with IVUS plaque burden from 8 to 12 weeks (ProSense VM110: r=0.774; ICG: r=0.572; p<0.0001). This finding remained significant on multivariate analysis adjusted for IVUS plaque burden, lumen area, and remodeling index (p<0.001). In additional multivariate analyses, the baseline NIRF signal at 8 weeks further predicted the magnitude of plaque progression even after adjustment for baseline plaque burden (p<0.001 for Prosense VM110; p=0.004 for ICG). Histology demonstrated NIRF agent uptake in inflamed, lipid-rich plaques. Conclusion: Plaque pathobiology and plaque burden progress in concert as assessed by translatable intravascular NIRF imaging technology. The baseline NIRF inflammation and impaired plaque permeability signals independently predict plaque progression. Integrated biological-microstructural imaging may enhance the ability to detect high-risk plaques at risk of progression.


2009 ◽  
Vol 40 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Baijun Fang ◽  
Suxia Luo ◽  
Yongping Song ◽  
Ning Li ◽  
Ying Cao

Sign in / Sign up

Export Citation Format

Share Document