401 MIGRATION AND THERAPEUTIC POTENTIAL OF PORCINE ADULT ADIPOSE-DERIVED MESENCHYMAL STEM CELLS

2010 ◽  
Vol 22 (1) ◽  
pp. 357 ◽  
Author(s):  
S. M. Wilson ◽  
E. Monaco ◽  
M. S. Goldwasser ◽  
S. G. Clark ◽  
W. L. Hurley ◽  
...  

Bone marrow is one current source of adult stem cells for therapeutic purposes; however, the magnitude and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative. Numerous in vitro studies have been conducted to determine how these cells act in vitro, but it is imperative to determine the vast abilities of these cells in vivo. The objective of this study was to evaluate in vivo migration and bone healing ability after transplanting adipose-derived stem cells (ADSC) in a swine model. Adipose-derived stem cells were isolated from subcutaneous adipose tissue of adult Yorkshire pigs and cultured in vitro. At 80 to 90% confluence/passage 3, the cells were trypsinized and labeled in suspension with carboxyfluorescein succinimidyl ester (CFDA-SE). This project included 20 pigs weighing between 63.5 and 81.7 kg. Bilateral mandibular osteoectomies with 10-mm defects were performed on each pig. Of the 20 pigs, half received a treatment of 2.5 million CFDA-SE labeled stem cells administered directly into each defect (DI), and the remaining half received a treatment of approximately 5 million CFDA-SE labeled stem cells through an ear vein injection via catheter (EVI). The time points were 1 h and 2 and 4 wk, with 2 pigs per time with the DI and EVI treatments. Pigs were slaughtered at each time, and spleen, liver, lung, kidney, ear vein, blood, and mandible tissues were collected. Blood samples were collected from the jugular vein with EDTA and processed via flow cytometry after collection. Tissues were fixed in 10% buffered formalin for histology. Fluorescent microscopy (CFDA-SE excitation/emission is 492/517 nm) has confirmed that transplanted ADSC do indeed migrate to a site of injury or trauma. Labeled cells were also present in blood collected from the 1-h time point group. Currently, we have not seen the presence of labeled ADSC in the other tissues (spleen, liver, lung, and kidney) after the 1-h time point. We did observe that ADSC administered by DI and EVI were able to significantly heal and regenerate bone defects within 4 wk post-surgery (P < 0.05, ANOVA with F-test), in contrast to bone defects in pigs that did not receive cell injections (control). Evidence of ADSC-related healing and bone regeneration was evident by gross visualization, dual-energy x-ray absorptiometry (DXA) and micro computer tomography (microCT) analysis. The clinical implications of these results are significant for treating many diseases in which inflammation or defects exist, such as cardiac disease, neurological disease, or traumatic injuries to both soft and hard tissue. If the adult stem cells can be harvested from fat, encouraged to produce bone or cartilage, and then reinserted into defects, treatment protocols for trauma victims could be developed that would reduce the need for alternate harvesting techniques for bone. This work was support by a grant from the Illinois Regenerative Medicine Institute (IDPH # 63080017).

2006 ◽  
Vol 18 (2) ◽  
pp. 208 ◽  
Author(s):  
A. S. Lima ◽  
S. A. Malusky ◽  
M. R. B. Mello ◽  
S. J. Lane ◽  
J. R. Rivera ◽  
...  

A primary concern in stem cell biology is that observations made in vitro may be an artifact of the in vitro culture environment. In vitro derived stem cells can be implanted into the environment from which they are derived so that their response to physiological conditions may be observed. Several important cellular characteristics need to be examined following the cell's reintroduction to the in vivo environment, including the potential for differentiation, proliferative ability, and life span. Studying implanted stem cells will assist in determining the potential for stem cell use in clinical therapies and provide further understanding of the role adult stem cells have in the adult body. Currently, the scientific literature is lacking a detailed description of the cellular response of adipose-derived stem cells (ADSCs) reintroduced to their exact tissue of origin. Thus, the aim of this study was to evaluate porcine ADSC growth in vivo and to analyze cell differentiation in vivo following injection of undifferentiated ADSCs into subcutaneous fat. Subcutaneous adipose tissue was isolated from the back fat of male pigs (11 months of age) and digested with 0.075% collagenase at 37�C for 90 min. The digested tissue was centrifuged at 200g for 10 min to obtain a cell pellet. The pellet was re-suspended with DMEM and the ADSCs were plated onto 75 cm2 flasks (5000-10 000 cells per cm2) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% gentamicin. Passage 3 ADSCs were labeled with fluorescent dye (PKH26; Sigma, St. Louis, MO, USA) and sorted by flow cytometry. After sorting, positive cells were washed and re-suspended in culture medium. For transplantation, 100 �L of cell suspension in DMEM containing one of four cell concentrations (0 (control); 30 000; 300 000; and 900 000 cells) were placed in a 1-mL syringe and injected into the subcutaneous back fat of recipient pigs (n = 2). Each pig had previously been tattooed with 12 13 � 13 squares to mark injection sites. The treatments were replicated three times within each animal. Two and three weeks after transplantation, animals were euthanized, the back fat containing the transplantation site was harvested, and the cells were disaggregated as described above. The buoyant adipocytes and pelleted ADSCs cells were then analyzed by flow cytometry. The results indicated that there were dose- and time-dependent increases in labeled ADSCs and labeled adipocytes in the fat samples with increasing cell number (from 0 to 300 000 cells). There was, however, a decrease in labeled ADSCs at the 900 000-cell dose, which is likely due to excess cells being transplanted or an immune reaction. Both of these aspects are currently being evaluated. In conclusion, undifferentiated ADSCs from swine can be isolated from and returned to the subcutaneous adipose layer and differentiate into mature adipocytes. This work was supported by the Council for Food and Agricultural Research (C-FAR) Sentinel Program, University of Illinois.


2017 ◽  
Vol 26 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Sang Woo Lee ◽  
Jae Uk Chong ◽  
Seon Ok Min ◽  
Seon Young Bak ◽  
Kyung Sik Kim

Falciform ligaments in the liver are surrounded by adipose tissue. We investigated the capability of adipose-derived stem cells from human liver falciform ligaments (hLF-ADSCs) to differentiate into hepatic-type cells and confirmed the functional capacity of the cells. Mesenchymal stem cells (MSCs) were isolated from the liver falciform ligament and abdominal subcutaneous adipose tissue in patients undergoing partial hepatectomy for liver disease. Cells were cultivated in MSC culture medium. Properties of MSCs were confirmed by flow cytometry, RT-PCR analysis, immunocytochemistry assays, and multilineage differentiation. Hepatic induction was performed using a three-step differentiation protocol with various growth factors. Morphology, capacity for expansion, and characteristics were similar between hLF-ADSCs and adipose-derived stem cells from human abdominal subcutaneous adipose tissue (hAS-ADSCs). However, hematopoietic– and mesenchymal–epithelial transition (MET)-related surface markers (CD133, CD34, CD45, and E-cadherin) had a higher expression in hLF-ADSCs. The hepatic induction marker genes had a higher expression in hLF-ADSCs on days 7 and 10 after the hepatic induction. Albumin secretion was similar between hLF-ADSCs and hAS-ADSCs at 20 days after the hepatic induction. The hLF-ADSCs had a different pattern of surface marker expression relative to hAS-ADSCs. However, proliferation, multilineage capacity, and hepatic induction were similar between the cell types. Accordingly, it may be a useful source of MSCs for patients with liver disease.


2021 ◽  
Vol 11 (20) ◽  
pp. 9391
Author(s):  
Emma Harris ◽  
Ruchi Sinnatamby ◽  
Elizabeth O’Flynn ◽  
Anna M. Kirby ◽  
Jeffrey C. Bamber

Quantitative measures of radiation-induced breast stiffness are required to support clinical studies of novel breast radiotherapy regimens and exploration of personalised therapy, however, variation between shear-wave elastography (SWE) machines may limit the usefulness of shear-wave speed (cs) for this purpose. Mean cs measured in four healthy volunteers’ breasts and a phantom using 2D-SWE machines Acuson S2000 (Siemens Medical Solutions) and Aixplorer (Supersonic Imagine) were compared. Shear-wave speed was measured in the skin region, subcutaneous adipose tissue and parenchyma. cs estimates were on average 2.3% greater when using the Aixplorer compared to S2000 in vitro. In vivo, cs estimates were on average 43.7%, 36.3% and 49.9% significantly greater (p << 0.01) when using the Aixplorer compared to S2000, for skin region, subcutaneous adipose tissue and parenchyma, respectively. In conclusion, despite relatively small differences between machines observed in vitro, large differences in absolute measures of shear wave speed measured were observed in vivo, which may prevent pooling of cross-machine data in clinical studies of the breast.


2009 ◽  
Vol 21 (1) ◽  
pp. 238 ◽  
Author(s):  
E. Monaco ◽  
A. Lima ◽  
S. Wilson ◽  
S. Lane ◽  
M. Bionaz ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose tissue (ADSC) and bone marrow (BMSC), and their differentiated progeny must be compared in an animal model, such as swine, that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the adipogenic lineage and to compare their transcript profile properties. ADSC and BMSC were isolated from subcutaneous adipose tissue and femurs of adult pigs, respectively, and differentiated along the adipogenic lineage using specific inducing medium. Cells were incubated up to 4 weeks with medium replaced every 3 days. Histological staining with Oil Red O was performed at 0, 2, 4, 7, 14, 21, 28 days of differentiation (dd) to confirm the adipogenic differentiation. RNA was also extracted at these time points. qPCR was performed on PPARG, DBI, ACSL1, CD36, CEBPA, DGAT2, ADFP, ADIPOQ, SCD. The geometrical mean of GTF2H3, NUBP, and PPP2CB was used as an internal control. Gene expression was analyzed using a mixed model of SAS with repeated time. The adipogenic differentiation of both ADSC and BMSC was confirmed by the Oil Red O positive staining. The relative mRNA abundance of all the genes at dd0 was similar between the ADSC and BMSC. The relative mRNA abundance of most of the genes was also similar between ADSC and BMSC throughout the adipogenic differentiation. ACSL1 and ADIPOQ had analogous expression patterns among the cell types. ACSL1 had relatively large mRNA abundance before differentiation, but ADIPOQ was barely detectable. As a consequence of differentiation, ACSL1 increased in relative mRNA abundance about 10-fold, whereas ADIPOQ mRNA increased about 1000-fold. Temporal expression patterns of SCD, DGAT2, and ADFP were similar. The increase in gene expression was >800% for SCD, >500% for ADFP, and >50 000% for DGAT2 after 7dd. ADSC had significantly higher expression of those genes compared to BMSC at 14 and 28dd. Both ADIPOQ and DGAT2 were almost undetectable prior to differentiation. mRNA expression of CD36 and DBI was similar with a significantly larger increase in expression of ADSC compared with BMSC. Relative mRNA abundance of CEBPA and PPARG was also larger in ADSC compared with BMSC; however, BMSC had a remarkable increase in temporal expression of those genes throughout adipogenic differentiation. These results suggest both cell types can differentiate towards the adipogenic lineage but with quantitatively different gene expression patterns. More investigation is needed before the ADSC can be considered a practical alternative source for stem cells in future human clinical applications. This research was supported by the Illinois Regenerative Medicine Institute.


2008 ◽  
Vol 20 (1) ◽  
pp. 223
Author(s):  
A. Lima ◽  
E. Monaco ◽  
S. Wilson ◽  
D. Kim ◽  
C. Feltrin ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose (ADSCs) and bone marrow (MSCs) and their differentiated progeny must be compared in an animal model that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the osteoblastic lineage and to compare their morphological, phenotypic, and genotypic properties. MSCs and ADSCs were isolated respectively from femurs and subcutaneous adipose tissue of adult pigs and cultured in vitro using DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin G-streptomycin, and 5.6 mg L–1 amphotericin B. After 3 passages, cells were differentiated along the osteogenic lineage using lineage-specific inducing medium. Osteogenic medium contained 100 nm dexamethasone, 10 mm β-glycerophosphate, and 0.005 mm ascorbic acid-2-phosphate. Osteogenic cultures were incubated for 4 weeks in 95% air and 5% CO2 at 39�C. Spent medium was replaced with fresh medium every 3 days. Histological staining with alkaline phosphatase, Von Kossa, and alizarin red S were performed at 0, 2, 4, 7, 14, 21, and 28 days of differentiation (dd). At the same time points, RNA was extracted. qPCR was performed on COL1A1, BGLAP, SPARC, and SPP1. As internal control, the geometrical mean of GTF2H, NUBP, and PPP2C was used. Relative mRNA abundance between cell types was calculated using 1/efficiencydCT. The osteogenic differentiation of both MSCs and ADScs was confirmed by the organization of the cells in nodules and by alkaline phosphatase-, Von Kossa-, and alizarin red S-positive staining. The percent relative abundance of the 4 genes in both cell types was COL1A1 (ca. 50) > SPARC (ca. 45) > SPP1 (ca. 5) > BGLAP ( < 0.1). Cell types showed similar mRNA abundance for COL1A1 and SPARC while SPP1 and BGLAP were, respectively, 10- and 19-fold higher in MSCs than in ADSCs. All of the genes had the same pattern among tissues during differentiation except for SPP1, which showed a >10-fold increase at 14 v. 0 dd only for MSCs. Adipose-derived stem cells demonstrated a clear osteogenic differentiation and similar expression and pattern of the two osteogenic genes most abundant in MSCs (COL1A1 and SPARC). However, the higher abundance of SPP1 and BGLAP and the different behavior of SPP1 in MSCs suggest a different transcription profile between the two cell types. From these preliminary results, adipose tissue can be a practical alternative source for stem cells in future human clinical applications.


1994 ◽  
Vol 266 (1) ◽  
pp. E151-E154 ◽  
Author(s):  
T. J. Kowalski ◽  
M. Watford

Information about adipose tissue amino acid metabolism is limited, with most data derived from studies in vitro. The purpose of this study was to further characterize the role of adipose tissue in glutamine metabolism in the rat in vivo. The extracellular concentrations of glutamine, glutamate, alanine, and ammonia were measured in the rat inguinal fat pad using a microdialysis sampling technique. A calibration method was used to accurately assess the extracellular levels of metabolites, and a comparison of these concentrations with those in arterial blood allowed determination of the net flux of each compound. The adipose tissue-arterial blood concentration differences were 122 +/- 19, 54 +/- 37, -61 +/- 21, and -28 +/- 13 microM for glutamine, alanine, glutamate, and ammonia, respectively, indicating a production of glutamine and an uptake of glutamate by subcutaneous adipose tissue. The magnitude of glutamine production suggests that adipose tissue may play a significant role in whole body glutamine homeostasis.


Author(s):  
Dhanasekaran Marappagounder ◽  
Indumathi Somasundaram ◽  
Sudarsanam Dorairaj ◽  
Rajkumar Sankaran

AbstractAlthough stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.


2013 ◽  
Vol 2013 ◽  
pp. 1-35 ◽  
Author(s):  
Patricia Zuk

In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.


2010 ◽  
Vol 22 (1) ◽  
pp. 347
Author(s):  
N. Cieslak ◽  
A. Massie ◽  
S. M. Wilson ◽  
E. Monaco ◽  
M. B. Wheeler

The quantity, accessibility, and abundance of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. Adult adipose-derived mesenchymal stem cells can differentiate into a variety of lineages including adipose, bone, cartilage, and muscle. In addition, the use of adult stem cells for regenerative medicine rather than those from embryos avoids concerns with ethics, safety, and immunology. One important issue is the ability to track the transplanted stem cells during the regeneration process to evaluate the stem cell-mediated healing. The objective of this study was to compare the efficiency, longevity, and intensity of carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and quantum dot nanocrystal (Qtracker™, Invitrogen, Carlsbad, CA, USA) labeled adipose-derived stem cells (ADSC) over an in vitro culture period of 4 weeks. Adipose-derived stem cells (6 x 106) previously isolated and frozen at -196°C were thawed and cultured in 75-cm3 flasks with 14 mL of DMEM. Cells were grown to 80% confluence and trypsinized. After trypsinization, the cells were divided into 4 treatments (3 x 106 cells per treatment). The treatments were (1) unlabeled control, (2) labeled with 30 μM CFDA SE, (3) labeled with 15 nM Qtracker™, and (4) labeled with 15 nM Qtracker™, following the Invitrogen Qtracker™ protocol. Cells (1 x 106) were removed from each treatment every week for 4 weeks and fixed in formalin for later analysis. When all the samples were collected, they were analyzed using flow cytometry. Data were analyzed via chi-square test. The percentage of cells labeled with CFDA SE and Qtracker™ was 99.35 and 98.46%, respectively, immediately after labeling. By 1 wk, the percentage of cells labeled with CFDA SE and Qtracker™ had deceased (P < 0.01) to 0.11 and 1.48%, respectively. The CFDA SE-labeled cell percentages had decreased (P < 0.01) to 0% at 2, 3, and 4 wk, respectively. The Qtracker™-labeled cells also decreased (P < 0.01) to 0.745, 1.69 and 0.45% at 2, 3, and 4 wk, respectively. The high rate of cell division of these cells in vitro might be responsible for the rapid loss of both labels during the first week of culture. Previous results from our lab have shown that the CFDA SE is retained in the cells for up to 6 wk in vivo (Lima AS et al. 2006 Reprod. Fertil. Dev. 18, 208). Similar studies need to be done with the quantum dot-labeled cells to determine the Qtracker™ label’s longevity in vivo. In conclusion, quantum dots can be used to label ADSC, in vitro, for at least 4 wk, albeit at much lower levels than those observed during the week following labeling. Determination of a suitable label for high-percentage porcine ADSC labeling during long-term in vitro culture remains to be completed. This research was supported by the Intel Scholar’s Program and the Illinois Regenerative Medicine Institute.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2824 ◽  
Author(s):  
Bong-Sung Kim ◽  
Pathricia V. Tilstam ◽  
Katrin Springenberg-Jung ◽  
Arne Hendrick Boecker ◽  
Corinna Schmitz ◽  
...  

Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds.


Sign in / Sign up

Export Citation Format

Share Document