scholarly journals From Blood to the Brain: Can Systemically Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier?

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Linan Liu ◽  
Mark A. Eckert ◽  
Hamidreza Riazifar ◽  
Dong-Ku Kang ◽  
Dritan Agalliu ◽  
...  

Systemically infused mesenchymal stem cells (MSCs) are emerging therapeutics for treating stroke, acute injuries, and inflammatory diseases of the central nervous system (CNS), as well as brain tumors due to their regenerative capacity and ability to secrete trophic, immune modulatory, or other engineered therapeutic factors. It is hypothesized that transplanted MSCs home to and engraft at ischemic and injured sites in the brain in order to exert their therapeutic effects. However, whether MSCs possess the ability to migrate across the blood-brain barrier (BBB) that separates the blood from the brain remains unresolved. This review analyzes recent advances in this area in an attempt to elucidate whether systemically infused MSCs are able to actively transmigrate across the CNS endothelium, particularly under conditions of injury or stroke. Understanding the fate of transplanted MSCs and their CNS trafficking mechanisms will facilitate the development of more effective stem-cell-based therapeutics and drug delivery systems to treat neurological diseases and brain tumors.

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2997
Author(s):  
Konstantin N. Yarygin ◽  
Daria D. Namestnikova ◽  
Kirill K. Sukhinich ◽  
Ilya L. Gubskiy ◽  
Alexander G. Majouga ◽  
...  

Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells’ fate and their interactions with the blood–brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs’ action—the ability of cells to cross the blood–brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.


2021 ◽  
Vol 22 (18) ◽  
pp. 10045
Author(s):  
Phuong Thao Do ◽  
Chung-Che Wu ◽  
Yung-Hsiao Chiang ◽  
Chaur-Jong Hu ◽  
Kai-Yun Chen

Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood–brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi82-vi82 ◽  
Author(s):  
Ellina Schulz ◽  
Almuth F Kessler ◽  
Ellaine Salvador ◽  
Dominik Domröse ◽  
Malgorzata Burek ◽  
...  

Abstract OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 138 ◽  
Author(s):  
Paolo Giunchedi ◽  
Elisabetta Gavini ◽  
Maria Cristina Bonferoni

Nose-to-brain delivery represents a big challenge. In fact there is a large number of neurological diseases that require therapies in which the drug must reach the brain, avoiding the difficulties due to the blood–brain barrier (BBB) and the problems connected with systemic administration, such as drug bioavailability and side-effects. For these reasons the development of nasal formulations able to deliver the drug directly into the brain is of increasing importance. This Editorial regards the contributions present in the Special Issue “Nose-to-Brain Delivery”.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1056
Author(s):  
Ekaterina Zinchenko ◽  
Maria Klimova ◽  
Aysel Mamedova ◽  
Ilana Agranovich ◽  
Inna Blokhina ◽  
...  

Alzheimer’s disease (AD) is an incurable pathology associated with progressive decline in memory and cognition. Phototherapy might be a new promising and alternative strategy for the effective treatment of AD, and has been actively discussed over two decades. However, the mechanisms of therapeutic photostimulation (PS) effects on subjects with AD remain poorly understood. The goal of this study was to determine the mechanisms of therapeutic PS effects in beta-amyloid (Aβ)-injected mice. The neurological severity score and the new object recognition tests demonstrate that PS 9 J/cm2 attenuates the memory and neurological deficit in mice with AD. The immunohistochemical assay revealed a decrease in the level of Aβ in the brain and an increase of Aβ in the deep cervical lymph nodes obtained from mice with AD after PS. Using the in vitro model of the blood-brain barrier (BBB), we show a PS-mediated decrease in transendothelial resistance and in the expression of tight junction proteins as well an increase in the BBB permeability to Aβ. These findings suggest that a PS-mediated BBB opening and the activation of the lymphatic clearance of Aβ from the brain might be a crucial mechanism underlying therapeutic effects of PS in mice with AD. These pioneering data open new strategies in the development of non-pharmacological methods for therapy of AD and contribute to a better understanding of the PS effects on the central nervous system.


2012 ◽  
Vol 32 (7) ◽  
pp. 1139-1151 ◽  
Author(s):  
Gary A Rosenberg

Disruption of the blood–brain barrier (BBB) has an important part in cellular damage in neurological diseases, including acute and chronic cerebral ischemia, brain trauma, multiple sclerosis, brain tumors, and brain infections. The neurovascular unit (NVU) forms the interface between the blood and brain tissues. During an injury, the cascade of molecular events ends in the final common pathway for BBB disruption by free radicals and proteases, which attack membranes and degrade the tight junction proteins in endothelial cells. Free radicals of oxygen and nitrogen and the proteases, matrix metalloproteinases and cyclooxgyenases, are important in the early and delayed BBB disruption as the neuroinflammatory response progresses. Opening of the BBB occurs in neurodegenerative diseases and contributes to the cognitive changes. In addition to the importance of the NVU in acute injury, angiogenesis contributes to the recovery process. The challenges to treatment of the brain diseases involve not only facilitating drug entry into the brain, but also understanding the timing of the molecular cascades to block the early NVU injury without interfering with recovery. This review will describe the molecular and cellular events associated with NVU disruption and potential strategies directed toward restoring its integrity.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhuo Cheng ◽  
Liping Wang ◽  
Meijie Qu ◽  
Huaibin Liang ◽  
Wanlu Li ◽  
...  

2018 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

ABSTRACTBrain pericytes play an important role in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system (CNS) disorders. While human pluripotent stem cells (hPSCs) have been used to model other components of the NVU including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, cells having brain pericyte-like phenotypes have not been described. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from human pluripotent stem cells (hPSCs) and subsequently differentiated NCSCs to brain pericyte-like cells. The brain pericyte-like cells expressed marker profiles that closely resembled primary human brain pericytes, and they self-assembled with endothelial cells to support vascular tube formation. Importantly, the brain pericyte-like cells induced blood-brain barrier (BBB) properties in BMECs, including barrier enhancement and reduction of transcytosis. Finally, brain pericyte-like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human NVU model that should prove useful for the study of the BBB in CNS health, disease, and therapy.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Aarushi Sahni ◽  
Nicole Katchur

The Blood-Brain Barrier (BBB) is a highly selective filter responsible for allowing certain gases such as oxygen and lipid-soluble molecules to pass (Anand 2014). Its selectiveness makes it challenging for many therapeutics to combat Alzheimer’s and Parkinson’s disease with external drug therapies. Large-molecule drug therapies never pass the BBB while small-molecule drugs pass only about 5% of the time (Pardridge 2005). In Alzheimer’s disease, tight junctions between endothelial cells degrade, causing an unregulated accumulation of amyloid-β (Aβ) protein (Ramanathan 2015). Consequently, this leads to the formation of neurofibrillary tangles that cut off the nutrient supply to the brain cells and kill neurons (Ramanathan 2015). In Parkinson’s disease, astrocyte mutations cause a build-up of α-synuclein (αSyn) which affects the neuroinflammatory response and causes dysfunction in dopaminergic neurons (Booth 2017; Meade 2019). New drug therapies for Alzheimer’s and Parkinson’s continue to undergo trials; some such as FPS-ZM1 and tilavonemab for Alzheimer’s and Ravicti for Parkinson’s have shown promising results. In addition, similarities in dysfunction for both diseases and some types of cancer have sparked possibilities in retargeting cancer drugs to improve Alzheimer's and Parkinson’s pathologies. This review will summarize current therapeutic advancements for Alzheimer’s and Parkinson’s disease and their possible future contributions.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii49-iii49
Author(s):  
A F Keßler ◽  
E Salvador ◽  
D Domröse ◽  
M Burek ◽  
C Tempel Brami ◽  
...  

Abstract BACKGROUND Alternating electric fields with intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm), known as Tumor Treating Fields (TTFields), have been established as a novel adjuvant therapy for glioblastoma (GBM) patients. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Due to this regulation, the BBB may block delivery of drugs for treatment of brain tumors, in particular GBM. In this study, we investigated the influence of TTFields on BBB permeability in vivo. MATERIAL AND METHODS For determination of BBB permeability, rats were treated with 100 kHz TTFields for 72 h. At the end of treatment, rats were i.v. injected with Evan′s Blue (EB), which binds Albumin (~70 kDa) upon injection to the blood. EB was extracted after brain homogenization and quantified at 610 nm. In addition, cryosections of rat brains were prepared following TTFields application at 100 kHz for 72 h, and sections were stained for Claudin 5, Occludin and immunoglobulin G (IgG) to assess vessel structure. Moreover, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent (Gd) was performed before and after TTFields application. RESULTS In vivo, the EB accumulation in the brain was significantly increased by application of TTFields to the rat head. Claudin 5 and Occludin staining was visible in vessel endothelial cells and localized at the cells’ edges in control cryosections of rat brains. In TTFields-treated rats, the vessel structure became diffuse; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue and not solely inside the vessels, as it is normally the case. Serial DCE-MRI demonstrated significantly increased accumulation of Gd in the brain, detected directly after 72 h of TTFields application. 96 h after end of TTFields treatment the effect on the BBB disappeared and no difference in contrast enhancement between controls and TTFields treated animals was observable. CONCLUSION Application of TTFields at 100 kHz could have the potential to deliver drugs to the brain, which normally are unable to cross the BBB by altering BBB integrity and permeability. Utilizing TTFields to open the BBB and its subsequent recovery, as demonstrated by the data presented herein, could lead to a clinical approach of drug delivery for treatment of malignant brain tumors and other diseases of the central nervous system. These results will be further validated in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document