scholarly journals Limited Comp Handover Algorithm For LTE-Advanced

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chung Lin ◽  
Kumbesan Sandrasegaran ◽  
Xinning Zhu ◽  
Zhuliang Xu

Coordinated multipoint (CoMP) transmission and reception is the key technique in LTE-Advanced to improve the cell-edge throughput and/or system throughput. Joint processing (JP) in CoMP technology provides multiple data transmission points for each user among multiple cooperated radio base stations. Hard handover mechanism is adopted to be used in LTE-Advanced. Standard hard handover algorithm could not satisfy the concept of JP in CoMP in LTE-A due to the constraint of single connection for each user at any time. While the radio resources in the system are fixed, the more multiple data connections a user has, the more radio resources are used for the extra data connections, thus the lower capacity a system becomes. Therefore a new handover algorithm that not only supports JP in CoMP but also takes system capacity into consideration in LTE-A system is necessary. This paper proposes a new handover algorithm known as Limited CoMP Handover Algorithm to support JP in CoMP and overcome the system capacity issue. System performance of Limited CoMP Handover Algorithm is evaluated and compared with open literature handover algorithm via simulation in this paper. The simulation results show that Limited CoMP Handover Algorithm outperforms open literature handover algorithm by having shorter system delay and less system load whilst maintaining a higher system throughput in a high congested network.

Author(s):  
Mohd Mueen Ul Islam Mattoo ◽  
Huda Adibah Mohd Ramli

<span lang="EN-GB">The allocation of radio resources is one of the most critical functions performed by the Radio Resource Management (RRM) mechanisms in the downlink Long Term Evolution – Advanced (LTE-Advanced). Packet scheduling concerns itself with allocation of these radio resources in an intelligent manner such that system throughput/capacity can be maximized whilst the required multimedia Quality of Service (QoS) is met. Majority of the previous studies of packet scheduling algorithms for LTE-Advanced did not take the effect of channel impairments into account. However, in real world the channel impairments cannot be obliterated completely and have a direct impact on the packet scheduling performance. As such, this work studies the impact of channel impairments on packet scheduling performance in a practical downlink LTE-Advanced. The simulation results obtained demonstrate the efficacy of RM2 scheduling algorithm over other scheduling algorithms in maximizing the system capacity and is more robust on the effect of the cellular channel impairments.  </span>


Device-to-Device (D2D) communications is expected to be a key technology of the forthcoming mobile communication networks because of its benefits in terms of spectral efficiency, energy efficiency, and system capacity. To mitigate frequency collisions as well as reduce the effects of co-channel interference between user's connections, we propose an interference-aware coordinated access control (IaCAC) mechanism for heterogeneous cellular D2D communication networks with dense device deployment of user equipment (UEs). In the proposed network setting, we consider the co-existence of both macro base stations (MBSs) and smallcell base stations (SBSs). In the proposed IaCAC mechanism, MBSs and SBSs are coordinated to perform access control to their UEs while MBSs allocate bandwidth parts dynamically to SBSs based on the interference levels measured at SBSs. Besides, to reduce D2D-to-cellular interference, device user equipments (DUEs) can perform power control autonomously. Simulation results show that the proposed IaCAC can provide higher system throughput and user throughput than those achieved by the network-assisted device-decided scheme proposed in [21]. Moreover, simulation results also reveal that the proposed IaCAC also significantly improve SINR of MUE’s and SUE’s uplink connections.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Abdallah Bou Saleh ◽  
Simone Redana ◽  
Jyri Hämäläinen ◽  
Bernhard Raaf

Decode-and-forward relaying is a promising enhancement to existing radio access networks and is currently being standardized in 3GPP to be part of the LTE-Advanced release 10. Two inband operation modes of relay nodes are to be supported, namely Type 1 and Type 1b. Relay nodes promise to offer considerable gain for system capacity or coverage depending on the deployment prioritization. However, the performance of relays, as any other radio access point, significantly depends on the propagation characteristics of the deployment environment. Hence, in this paper, we investigate the performance of Type 1 and Type 1b inband relaying within the LTE-Advanced framework in different propagation scenarios in terms of both coverage extension capabilities and capacity enhancements. A comparison between Type 1 and Type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay node deployments. System level simulations show that Type 1 and Type 1b inband relay deployments offer low to very high gains depending on the deployment environment. As well, it is shown that the effect of the relaying overhead is minimal on coverage extension whereas it is more evident on system throughput.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1752
Author(s):  
Jia-Ming Liang ◽  
Ching-Kuo Hsu ◽  
Jen-Jee Chen ◽  
Po-Han Lin ◽  
Po-Min Hsu ◽  
...  

Coordinated Multi-Point (CoMP) is an important technique in B4G/5G networks. With CoMP, multiple base stations can be clustered to compose a cooperating set to improve system throughput, especially for the users in cell edges. Existed studies have discussed how to mitigate overloading scenarios and enhance system throughput with CoMP statically. However, static cooperation fixes the set size and neglects the fast-changing of B4G/5G networks. Thus, this paper provides a full study of off-peak hours and overloading scenarios. During off-peak hours, we propose to reduce BSs’ transmission power and use the free radio resource to save energy while guaranteeing users’ QoS. In addition, if large-scale activities happen with crowds gathering or in peak hours, we dynamically compose the cooperating set based on instant traffic requests to adjust base stations’ BSs’ transmission power; thus, the system will efficiently offload the traffic to the member cells which have available radio resources in the cooperating set. Experimental results show that the proposed schemes enhance system throughput, radio resource utilization, and energy efficiency, compared to other existing schemes.


2014 ◽  
Vol 989-994 ◽  
pp. 1671-1675
Author(s):  
Zhe Liang ◽  
Yi Bing Li ◽  
Fang Ye

In LTE-A (LTE-Advanced) system, CoMP (Coordinated Multipoint Transmission) is used to improve system capacity and cell coverage. CB(Coordinated Beamforming), as a way of CoMP, using multi-cell coordination to improve the spectrum efficiency of edge users. Therefore, coordinated cell selection is important. To achieve better performance, multiple factors rather than a single one are considered in cell selection, channel gain as well as cell load is taken into account in the article. Multiple factors constitute a matrix to find the optimal coordinated cells, multi-objective optimization is used here. Simulation result shows system performance of the proposed algorithm is better than the one only considers channel gain.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Cédric Gueguen ◽  
Malo Manini

Even though system energy and spectral efficiency are major issues in wireless network, reaching these objectives conjointly seems very difficult and requires the usage of tradeoffs. Moreover, depending on the context, the importance of either varies. In underloaded context, guaranteeing high Quality of Service (QoS) is easily achievable due to large surplus of available radio resources and focus should be put on energy rather than system throughput. On the contrary, in an overloaded context, the lack of available radio resources required that resources allocation algorithms focus on system capacity in order to preserve QoS. Since the major issue of the network is to satisfy users, in this specific case, energy consumption must become lesser important. Many specialized solutions have been proposed that focus either on energy saving or on throughput maximization. They provide high performances, respectively, on their specific network traffic load context, previously described, but are not optimized outside. Other solutions that proposed static tradeoffs provide average performances but can not be fully efficient in all scenarios. In this paper, we propose a Dynamic Tradeoff between energy and throughput efficiency that adapts the scheduler priorities to the network context and particularly to the traffic load. Considering the context, the scheduler is able to adjust its behavior in order to maintain high QoS while reducing as much energy as possible. Performance evaluation will show that the proposed solution succeeds to minimize energy consumption better than energy focused scheduler in underloaded context while being able to reach the same spectral efficiency as throughput oriented scheduler in highly loaded context.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 80
Author(s):  
Qiuqi Han ◽  
Guangyuan Zheng ◽  
Chen Xu

Device-to-Device (D2D) communications, which enable direct communication between nearby user devices over the licensed spectrum, have been considered a key technique to improve spectral efficiency and system throughput in cellular networks (CNs). However, the limited spectrum resources cannot be sufficient to support more cellular users (CUs) and D2D users to meet the growth of the traffic data in future wireless networks. Therefore, Long-Term Evolution-Unlicensed (LTE-U) and D2D-Unlicensed (D2D-U) technologies have been proposed to further enhance system capacity by extending the CUs and D2D users on the unlicensed spectrum for communications. In this paper, we consider an LTE network where the CUs and D2D users are allowed to share the unlicensed spectrum with Wi-Fi users. To maximize the sum rate of all users while guaranteeing each user’s quality of service (QoS), we jointly consider user access and resource allocation. To tackle the formulated problem, we propose a matching-iteration-based joint user access and resource allocation algorithm. Simulation results show that the proposed algorithm can significantly improve system throughput compared to the other benchmark algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Author(s):  
Yan Cai ◽  
Liang Ran ◽  
Jun Zhang ◽  
Hongbo Zhu

AbstractEdge offloading, including offloading to edge base stations (BS) via cellular links and to idle mobile users (MUs) via device-to-device (D2D) links, has played a vital role in achieving ultra-low latency characteristics in 5G wireless networks. This paper studies an offloading method of parallel communication and computation to minimize the delay in multi-user systems. Three different scenarios are explored, i.e., full offloading, partial offloading, and D2D-enabled partial offloading. In the full offloading scenario, we find a serving order for the MUs. Then, we jointly optimize the serving order and task segment in the partial offloading scenario. For the D2D-enabled partial offloading scenario, we decompose the problem into two subproblems and then find the sub-optimal solution based on the results of the two subproblems. Finally, the simulation results demonstrate that the offloading method of parallel communication and computing can significantly reduce the system delay, and the D2D-enabled partial offloading can further reduce the latency.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


Sign in / Sign up

Export Citation Format

Share Document