scholarly journals Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

Scientifica ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Carlo Travaglini-Allocatelli

Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

2019 ◽  
Vol 85 (24) ◽  
Author(s):  
Kailun Guo ◽  
Wei Wang ◽  
Haixia Wang ◽  
Zhenmei Lu ◽  
Haichun Gao

ABSTRACT c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts c. IMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c. It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c. Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ofir Klein ◽  
Ronit Sagi-Eisenberg

Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen, mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is compound exocytosis—a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 332
Author(s):  
Valentina Brillo ◽  
Leonardo Chieregato ◽  
Luigi Leanza ◽  
Silvia Muccioli ◽  
Roberto Costa

Mitochondria are key intracellular organelles involved not only in the metabolic state of the cell, but also in several cellular functions, such as proliferation, Calcium signaling, and lipid trafficking. Indeed, these organelles are characterized by continuous events of fission and fusion which contribute to the dynamic plasticity of their network, also strongly influenced by mitochondrial contacts with other subcellular organelles. Nevertheless, mitochondria release a major amount of reactive oxygen species (ROS) inside eukaryotic cells, which are reported to mediate a plethora of both physiological and pathological cellular functions, such as growth and proliferation, regulation of autophagy, apoptosis, and metastasis. Therefore, targeting mitochondrial ROS could be a promising strategy to overcome and hinder the development of diseases such as cancer, where malignant cells, possessing a higher amount of ROS with respect to healthy ones, could be specifically targeted by therapeutic treatments. In this review, we collected the ultimate findings on the blended interplay among mitochondrial shaping, mitochondrial ROS, and several signaling pathways, in order to contribute to the dissection of intracellular molecular mechanisms involved in the pathophysiology of eukaryotic cells, possibly improving future therapeutic approaches.


2021 ◽  
Author(s):  
Jie He ◽  
Nico Rössner ◽  
Minh T T Hoang ◽  
Santiago Alejandro ◽  
Edgar Peiter

Abstract Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments [Golgi apparatus, trans-Golgi Network (TGN), prevacuolar compartment (PVC)], vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g., Glutamate-Receptor-Likes (GLRs), Cyclic-Nucleotide-Gated Channels (CNGCs), Mitochondrial Conductivity Units (MCUs), Two-Pore Channel1 (TPC1)], transporters [e.g., Natural-Resistance-Associated Macrophage Proteins (NRAMPs), Calcium Exchangers (CAXs), Metal-Tolerance Proteins (MTPs), Bivalent-Cation Transporters (BICATs)] and pumps [Autoinhibited Ca2+-ATPases (ACAs), ER Ca2+-ATPases (ECAs)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular with respect to tunable molecular mechanisms of Ca2+-versus-Mn2+ selectivity.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 206
Author(s):  
Md Bashir Uddin ◽  
S.M. Bayejed Hossain ◽  
Mahmudul Hasan ◽  
Mohammad Nurul Alam ◽  
Mita Debnath ◽  
...  

Colistin (polymyxin E) is widely used in animal and human medicine and is increasingly used as one of the last-resort antibiotics against Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant Gram-negative bacteria, resistance to this antibiotic ought to be monitored. The study was undertaken to elucidate the molecular mechanisms, genetic relationships and phenotype correlations of colistin-resistant isolates. Here, we report the detection of the mcr-1 gene in chicken-associated Salmonella isolates in Bangladesh and its in-silico functional analysis. Out of 100 samples, 82 Salmonella spp. were isolated from chicken specimens (liver, intestine). Phenotypic disc diffusion and minimum inhibitory concentration (MIC) assay using different antimicrobial agents were performed. Salmonella isolates were characterized using PCR methods targeting genus-specific invA and mcr-1 genes with validation for the functional analysis. The majority of the tested Salmonella isolates were found resistant to colistin (92.68%), ciprofloxacin (73.17%), tigecycline (62.20%) and trimethoprim/sulfamethoxazole (60.98%). When screened using PCR, five out of ten Salmonella isolates were found to carry the mcr-1 gene. One isolate was confirmed for Salmonella enterica subsp. enterica serovar Enteritidis, and other four isolates were confirmed for Salmonella enterica subsp. enterica serovar Typhimurium. Sequencing and phylogenetic analysis revealed a divergent evolutionary relationship between the catalytic domain of Neisseria meningitidis lipooligosaccharide phosphoethanolamine transferase A (LptA) and MCR proteins, rendering them resistant to colistin. Three-dimensional homology structural analysis of MCR-1 proteins and molecular docking interactions suggested that MCR-1 and LptA share a similar substrate binding cavity, which could be validated for the functional analysis. The comprehensive molecular and in-silico analyses of the colistin resistance mcr-1 gene of Salmonella spp. of chicken origin in the present study highlight the importance of continued monitoring and surveillance for antimicrobial resistance among pathogens in food chain animals.


2019 ◽  
Vol 30 (23) ◽  
pp. 2873-2877
Author(s):  
Peter Devreotes

It is a tremendous honor to receive the 2019 E.B. Wilson Award and be recognized for my work on chemotaxis in eukaryotic cells. In writing this essay, I hope to achieve three aims: 1) to tell the story of how people in my group made discoveries over the years; 2) to outline key principles we have learned about chemotaxis; and 3) to point to the most important outstanding questions.


2012 ◽  
Vol 3 (2) ◽  
pp. 161-173 ◽  
Author(s):  
Wera Roth ◽  
Mechthild Hatzfeld ◽  
Maik Friedrich ◽  
Sören Thiering ◽  
Thomas M. Magin

AbstractEpithelial tissues act as hubs in metabolism and communication and protect the organism against dehydration, infections, pharmacological and physical stress. Keratin intermediate filament proteins are well established as major cytoskeletal players in maintaining epithelial integrity. More recently, an involvement of keratins in growth control and organelle functions has emerged. Disruption of the keratin cytoskeleton by mutations or its reorganization following posttranslational modifications can render epithelia susceptible to tissue damage and various stresses, while loss of keratin expression is a hallmark of epithelial-mesenchymal transition (EMT). To understand the molecular mechanisms by which keratins perform their functions remains a formidable challenge. Based on selected examples, we will discuss how cell-specific expression of keratin isotypes affects cytoarchitecture and cell behavior. Further, we ask how posttranslational modifications alter keratin organization and interactions during signaling. Next, we discuss pathomechanisms of epidermal keratin disorders in the light of novel data. Finally, we raise open questions and point out future directives.


Author(s):  
Jingjing Wang ◽  
Huixin Peng ◽  
Ayse Anil Timur ◽  
Vinay Pasupuleti ◽  
Yufeng Yao ◽  
...  

Objective: Angiogenic factor AGGF1 (angiogenic factor and G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results: Using functional blocking studies with neutralizing antibodies, we identified α5β1 as the receptor for AGGF1 on ECs. AGGF1 interacts with α5β1 and activates FAK (focal adhesion kinase), Src, and AKT. Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from −RDD- to −RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions: We have identified integrin α5β1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of α5β1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with α5β1 and signaling.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qiushuang Sheng ◽  
Runbao Du ◽  
Cunhui Ma ◽  
Yonglin Zhou ◽  
Xue Shen ◽  
...  

Abstract Background The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. Methods Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. Results Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. Conclusion Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.


2020 ◽  
Author(s):  
Ryan Ard ◽  
Jean-Christian Maillet ◽  
Elias Daher ◽  
Michael Phan ◽  
Radoslav Zinoviev ◽  
...  

AbstractCells can switch between Rac1, lamellipodia-based and RhoA, blebbing-based migration modes but the molecular mechanisms regulating this choice are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation. Instead, DGKζ functions as a scaffold that stimulates RhoA release by enhancing RhoGDI phosphorylation by protein kinase Cα (PKCα). Here, PKCα-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification increased binding of the DGKζ C-terminus to the α1-syntrophin PDZ domain. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the Rho-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells required the PDZ-binding motif, suggesting syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism involving DGKζ phosphorylation by PKCα that favours RhoA-driven blebbing over Rac1-driven lamellipodia formation and macropinocytosis. These findings provide a mechanistic basis for the effect of PKCα signaling on Rho GTPase activity and suggest PKCα activity plays a role in the interconversion between Rac1 and RhoA signaling that underlies different migration modes.


Sign in / Sign up

Export Citation Format

Share Document