scholarly journals Hydrothermal Synthesis of Pt-, Fe-, and Zn-dopedSnO2Nanospheres and Carbon Monoxide Sensing Properties

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Weigen Chen ◽  
Qu Zhou ◽  
Shudi Peng

Pure and M-doped (M = Pt, Fe, and Zn) SnO2nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2nanospheres, the Pt-doped SnO2nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Weigen Chen ◽  
Qu Zhou ◽  
Fu Wan ◽  
Tuoyu Gao

Nano-SnO2powder was prepared by the hydrothermal method in this paper. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the composition of the crystalline phase and the morphology of the prepared gas-sensitive materials, respectively. In particular, the study focused on the sensing behaviors of nano-SnO2-based sensor towards power transformer fault gases such as hydrogen and carbon monoxide. The optimum working temperature for hydrogen and carbon monoxide is about 400∘C and 360∘C, separately. Further investigations into the adsorption process of gas molecule on SnO2(110) surface based on the first principles were conducted. The calculations indicated that 1σorbits of H2split into several new electronic peaks and 5σorbits of CO almost degenerated completely in the adsorption process, which promoted charge transfer between gas molecule and SnO2(110) surface. It provides a qualitative explanation for the prepared nano-SnO2-based sensor exhibiting different gas sensing properties towards H2and CO.


2010 ◽  
Vol 654-656 ◽  
pp. 1154-1157 ◽  
Author(s):  
Yu Lu ◽  
Wei Jin ◽  
Wen Chen

Polythiophene (PTP) coated V2O5 nanotubes were prepared by an in-situ polymerization of thiophene monomers in the presence of prepared V2O5 nanotubes. The nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which proved the polymerization of thiophene monomer and the strong interaction between polythiophene and V2O5 nanotubes (VONTs). The gas sensing properties of PTP coated V2O5 nanotubes were studied at room temperature, which was found that PTP coated V2O5 nanotubes could detect ethanol with much higher sensitivity than pure VONTs. The sensing mechanism of PTP coated V2O5 nanotubes to ethanol is presumed to be the synergetic interaction between polythiophene (PTP) and V2O5 nanotubes.


2011 ◽  
Vol 284-286 ◽  
pp. 1006-1009
Author(s):  
Bin Wang ◽  
Fu Bo Gu ◽  
Dong Mei Han ◽  
Guang Sheng Guo

In(OH)3 and InOOH were prepared through a simple hydrothermal method at different volume ratios of En and H2O. C-In2O3 and H-In2O3 were obtained by annealing these two precursors at 400°C in air, respectively. One-step In2O3 was also synthesized via solvothermal process using DEG as solvents. The effects of reaction conditions on phase structures and morphologies were studied. The gas sensing properties of the obtained materials toward ethanol were measured and X-ray diffraction, field-emission scanning electron microscope and PL were used to characterize the as-obtained products.


Author(s):  
S. Kumar ◽  
P. Gowthaman ◽  
J. Deenathayalan

Electro spinning technology combined with chemical precipitation method and high-temperature calcination was used to prepare SnO2-NiO composite semiconductor nanofibers with different Sn content. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology, structure and content of various elements of the sample. Using ethanol as the target gas, the gas sensing properties of SnO2-NiO nanofibers and the influence of Sn content on the gas sensing properties of composite nanofibers were explored. The research results show that SnO2-NiO composite nanofibers have a three-dimensional network structure, and the SnO2 composite can significantly enhance the gas sensitivity of NiO nanofibers. With increase of SnO2 content, the response sensitivity of composite fibers to ethanol gas increases, and the response sensitivity of composite nanofibers with the highest response to ethanol gas with a volume fraction of 100×10-6 at the optimal working temperature of 160℃ are13.4;It is 8.38 times the maximum response sensitivity of NiO nanofibers. Compared with the common ethanol gas sensor MQ-3 on the market, SnO2-NiO composite nanofibers have a lower optimal working temperature and higher response sensitivity, which has certain practical application value


2010 ◽  
Vol 26 (6) ◽  
pp. 726-731 ◽  
Author(s):  
M. F. Al-Kuhaili ◽  
S. M. A. Durrani ◽  
I. A. Bakhtiari

2020 ◽  
Vol 44 (37) ◽  
pp. 16174-16184
Author(s):  
Haoyue Yang ◽  
Rui Zhou ◽  
Yongjiao Sun ◽  
Pengwei Li ◽  
Wendong Zhang ◽  
...  

Au nanoparticle (Au NP) modified α-Fe2O3 nanodisk structures are obtained using a facile hydrothermal method and annealing based surface treatment.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1059 ◽  
Author(s):  
Yanlin Zhang ◽  
Chaowei Jia ◽  
Qiuyue Wang ◽  
Quan Kong ◽  
Gang Chen ◽  
...  

Toluene is extensively used in many industrial products, which needs to be effectively detected by sensitive gas sensors even at low-ppm-level concentrations. Here, NiFe2O4 nano-octahedrons were calcinated from NiFe-bimetallic metal-organic framework (MOFs) octahedrons synthesized by a facile refluxing method. The co-existence of p-Phthalic acid (PTA) and 3,3-diaminobenzidine (DAB) promotes the formation of smooth NiFe-bimetallic MOFs octahedrons. After subsequent thermal treatment, a big weight loss (about 85%) transformed NiFe2O4 nanoparticles (30 nm) into NiFe2O4 porous nano-octahedrons with hollow interiors. The NiFe2O4 nano-octahedron based sensor exhibited excellent gas sensing properties for toluene with a nice stability, fast response, and recovery time (25 s/40 s to 100 ppm toluene), and a lower detection limitation (1 ppm) at 260 °C. The excellent toluene-sensing properties can not only be derived from the hollow interiors combined with porous nano-octahedrons to favor the diffusion of gas molecules, but also from the efficient catalytic activity of NiFe2O4 nanoparticles.


2013 ◽  
Vol 873 ◽  
pp. 304-310 ◽  
Author(s):  
Jin Zhang ◽  
Yu Min Zhang ◽  
Chang Yi Hu ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

The gas-sensing properties of zinc doped lanthanum ferrite (Zn-LaFeO3) compounds for formaldehyde were investigated in this paper. Zn-LaFeO3 powders were prepared using sol-gel method combined with microwave chemical synthesis. The powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formaldehyde gas-sensing characteristics for the sample were examined. The experimental results indicate that the sensor based on the sample Zn-LaFeO3 shows excellent gas-sensing properties to formaldehyde gas. At the optimal operating temperature of 250°C, the sensitivity of the sensor based on LaFe0.7Zn0.3O3 to 100ppm formaldehyde is 38, while to other test gases, the sensitivity is all lower than 20. The response and recovery times for the sample to formaldehyde gas are 100s and 100s, respectively.


2012 ◽  
Vol 620 ◽  
pp. 350-355 ◽  
Author(s):  
Wan Normiza Wan Mustapha ◽  
S.A. Rezan Sheikh Abdul Hamid ◽  
Sabar Derita Hutagalung ◽  
Nguyen Van Hieu ◽  
Khairudin Mohamed ◽  
...  

Tin oxide nanostructures (NS) were grown on silicon substrates by thermal evaporation method with three different parameters. These parameters were temperatures (650 °C, 750 °C and 850 °C), nickel catalyst concentrations (0, 5 and 10 milimoles) and tin powder source to substrate distances (2 cm, 4 cm and 6 cm). The parameters were found to affect the size and morphology of the synthesized nanostructures. Formation of nanospheres (NSs), nanoneedles (NNs) and nanowires (NWs) of tin oxide were observed by Scanning Electron Microscope (SEM) at different synthesis conditions. Synthesis temperature was found to have most pronounced effect on the size and morphology of the nanostructures. Catalyst concentration has affected the porosity and growth of the nanostructures. The distance between source and substrate affected the nanostructures predominately on distribution and particle size. Energy dispersion X-ray (EDX) analysis confirms the presence of tin and oxygen in all nanostructures at all synthesis conditions. X-ray diffraction (XRD) proves the formation of tin oxide phase in all samples. Significant formation of tin oxide nanowires was observed at 850 °C. Gas sensing properties of SnO2 nanowires (NW) toward ethanol (C2H5OH) gas at 450°C with different volume concentration was measured. It was found SnO2 NW had good sensing properties for C2H5OH at 100 ppm compared to measurements made at 25-50 ppm.


2018 ◽  
Vol 5 (9) ◽  
pp. 2123-2131 ◽  
Author(s):  
YanYang Yin ◽  
Feng Li ◽  
Nan Zhang ◽  
Shengping Ruan ◽  
Haifeng Zhang ◽  
...  

Porous silver-functionalized ZnSnO3 hollow nanocubes as a gas sensor with an ultra-fast response and recovery speed for acetone detection.


Sign in / Sign up

Export Citation Format

Share Document