scholarly journals Modified Malmquist Productivity Index Based on Present Time Value of Money

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Farhad Hosseinzadeh Lotfi ◽  
Golamreza Jahanshahloo ◽  
Mohsen Vaez-Ghasemi ◽  
Zohreh Moghaddas

Data envelopment analysis (DEA) models can calculate the Malmquist Productivity Index (MPI). Classic Malmquist Productivity Index shows regress and progress of a DMU in different periods with efficiency and technology variations without considering the present value of money. This issue is of major importance since while a currency of in previous year is not equal to that of now this would yield bias results which can affect the correct interpretation. The index developed here is defined in terms of Modified Malmquist Productivity Index model, which can calculate progress and regress by using the factor of present time value of money. The incorporation of present time value of money is also calculated within the framework of data envelopment analysis. This factor is fundamental and should be considered in DEA Malmquist Productivity Index. Moreover, here, differences between presented models are compared to those of previous ones indeed, biased results will be shown in the case study in banks, and problem and solution have been investigated in the literature.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Reza Kiani Mavi ◽  
Neda Kiani Mavi ◽  
Reza Farzipoor Saen ◽  
Mark Goh

PurposeDespite unanimity in the literature that eco-innovation (EI) leads to sustainable development, evidence remains limited on measuring EI efficiency with the Malmquist productivity index (MPI). In conventional data envelopment analysis (DEA) models, decision-making units (DMUs) are inclined to assign more favorable weights, even zero, to the inputs and outputs to maximize their own efficiency. This paper aims to overcome this shortcoming by developing a common set of weights (CSW). Design/methodology/approachUsing goal programming, this study develops a CSW model to evaluate the EI efficiency of the organization for economic co-operation and development (OECD) countries and track their changes with MPI during 2010–2018. FindingsAchieving a complete ranking of DMUs, findings show the higher discrimination power of the proposed CSW compared with the original DEA models. Furthermore, results reveal that Iceland, Latvia and Luxembourg are the only OECD countries that have incessantly improved their EI productivity (MPI > 1) from 2010 to 2018. On the other hand, Japan is the OECD country that has experienced the highest yearly EI efficiency during 2010–2018. This paper also found that Iceland has the highest MPI over 2010–2018. Practical implicationsMore investment in environmental research and development (R&D) projects instead of generic R&D enables OECD members to realize more opportunities for sustainable development through minimizing energy use and environmental pollution in any form of waste and greenhouse gas emissions. Originality/valueIn addition to developing a novel common weights model for DEA-MPI to measure and evaluate the EI of OECD countries, this paper develops a CSW model by including the undesirable outputs for EI analysis.


2018 ◽  
Vol 29 (5) ◽  
pp. 664-684 ◽  
Author(s):  
Qingyou Yan ◽  
Xu Wang ◽  
Tomas Baležentis ◽  
Dalia Streimikiene

This paper presents a modified environmental production technology which imposes the proper disposability on the undesirable outputs depending on the underlying technical properties. Then, aggregate and disaggregate (Russell-type) data envelopment analysis (DEA) models are proposed to evaluate the energy–economy–environment (3E) efficiency based on the modified technology (hereafter referred to as the 3E-DEA models). The non-radial Malmquist productivity index is adapted to model the changes in the 3E productivity over time. A case study of 3E efficiency analysis for the 30 Chinese administrative regions during 2011–2013 is presented. In general, Chinese regions did not perform well in terms of 3E goals as only three of them exhibited full efficiency. It was also found out that the eastern area showed the best 3E performance, whereas the central area followed suit, thus putting the western area at end of ranking. Still, some regions in the eastern area showed 3E efficiencies lower than those of some cities in the central and eastern areas. Anyway, most of the regions showed improving 3E productivity during 2011–2013.


1970 ◽  
Vol 5 (1) ◽  
pp. 77
Author(s):  
Mahadzir Ismail ◽  
Saliza Sulaiman ◽  
Hasni Abdul Rahim ◽  
Nordiana Nordin

The Financial Master Plan (2001- 2010) aims to enhance the capacity of banking industry so that higher effic iency and productivity can be reaped in the future. This study seeks to determine the impact of merger on the efficiency and productivity ofcommercial banks in Malaysia for the period 1995 until 2005. The study uses a non-parametric approach, nam ely DEA (data envelopment analysis?) to estimate the efficiency scores and to construct the Malmquist productivity index. To enable this estimation, three bank inputs and outputs are used. Amongst the findings are those banks exhibit higher efficiency score after the merger and thefo reign banks are more efficient than the local banks. Productivity of the banks is calculated in both periods, before and after the merger: The results show that, it is the local banks that have improved the most after the merger. The main source of productivity is technical change or innovation. The findings support the existing policy of having larger domestic banks in term of size.


2018 ◽  
Vol 17 (05) ◽  
pp. 1429-1467 ◽  
Author(s):  
Mohammad Amirkhan ◽  
Hosein Didehkhani ◽  
Kaveh Khalili-Damghani ◽  
Ashkan Hafezalkotob

The issue of efficiency analysis of network and multi-stage systems, as one of the most interesting fields in data envelopment analysis (DEA), has attracted much attention in recent years. A pure serial three-stage (PSTS) process is a specific kind of network in which all the outputs of the first stage are used as the only inputs in the second stage and in addition, all the outputs of the second stage are applied as the only inputs in the third stage. In this paper, a new three-stage DEA model is developed using the concept of three-player Nash bargaining game for PSTS processes. In this model, all of the stages cooperate together to improve the overall efficiency of main decision-making unit (DMU). In contrast to the centralized DEA models, the proposed model of this study provides a unique and fair decomposition of the overall efficiency among all three stages and eliminates probable confusion of centralized models for decomposing the overall efficiency score. Some theoretical aspects of proposed model, including convexity and compactness of feasible region, are discussed. Since the proposed bargaining model is a nonlinear mathematical programming, a heuristic linearization approach is also provided. A numerical example and a real-life case study in supply chain are provided to check the efficacy and applicability of the proposed model. The results of proposed model on both numerical example and real case study are compared with those of existing centralized DEA models in the literature. The comparison reveals the efficacy and suitability of proposed model while the pitfalls of centralized DEA model are also resolved. A comprehensive sensitivity analysis is also conducted on the breakdown point associated with each stage.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xishuang Han ◽  
Xiaolong Xue ◽  
Jiaoju Ge ◽  
Hengqin Wu ◽  
Chang Su

Data envelopment analysis can be applied to measure the productivity of multiple input and output decision-making units. In addition, the data envelopment analysis-based Malmquist productivity index can be used as a tool for measuring the productivity change during different time periods. In this paper, we use an input-oriented model to measure the energy consumption productivity change from 1999 to 2008 of fourteen industry sectors in China as decision-making units. The results show that there are only four sectors that experienced effective energy consumption throughout the whole reference period. It also shows that these sectors always lie on the efficiency frontier of energy consumption as benchmarks. The other ten sectors experienced inefficiency in some two-year time periods and the productivity changes were not steady. The data envelopment analysis-based Malmquist productivity index provides a good way to measure the energy consumption and can give China's policy makers the information to promote their strategy of sustainable development.


2020 ◽  
Vol 5 (6) ◽  
pp. 651-658 ◽  
Author(s):  
Mirpouya Mirmozaffari ◽  
Azam Boskabadi ◽  
Gohar Azeem ◽  
Reza Massah ◽  
Elahe Boskabadi ◽  
...  

Machine learning grows quickly, which has made numerous academic discoveries and is extensively evaluated in several areas. Optimization, as a vital part of machine learning, has fascinated much consideration of practitioners. The primary purpose of this paper is to combine optimization and machine learning to extract hidden rules, remove unrelated data, introduce the most productive Decision-Making Units (DMUs) in the optimization part, and to introduce the algorithm with the highest accuracy in Machine learning part. In the optimization part, we evaluate the productivity of 30 banks from eight developing countries over the period 2015-2019 by utilizing Data Envelopment Analysis (DEA). An additive Data Envelopment Analysis (DEA) model for measuring the efficiency of decision processes is used. The additive models are often named Slack Based Measure (SBM). This group of models measures efficiency via slack variables. After applying the proposed model, the Malmquist Productivity Index (MPI) is computed to evaluate the productivity of companies. In the machine learning part, we use a specific two-layer data mining filtering pre-processes for clustering algorithms to increase the efficiency and to find the superior algorithm. This study tackles data and methodology-related issues in measuring the productivity of the banks in developing countries and highlights the significance of DMUs productivity and algorithms accuracy in the banking industry by comparing suggested models.


2020 ◽  
Vol 10 (5) ◽  
pp. 1760 ◽  
Author(s):  
Chia-Nan Wang ◽  
Hsien-Pin Hsu ◽  
Yen-Hui Wang ◽  
Tri-Tung Nguyen

One problem raised by the lack of energy efficiency is the generation of more greenhouse gases (GHGs) that can cause air pollution and climate change. Ecological efficiency (eco-efficiency) means the efficiency of resources used. A poor performance from this efficiency can then be detected for further improvement. In this research, we conduct an assessment on the eco-efficiency for some European countries as they consume a large part of global energy annually. A total of 17 European countries were selected as decision making units (DMUs) and assessed by the Slacks-based measure (SBM) Data Envelopment Analysis (DEA) model. Indices including Catch-Up, Frontier-Shift, and Malmquist Productivity Index (MPI) have been used to evaluate eco-efficiency, as well as efficiency change, technological change, and productivity change, over 2013–2017. In the model, energy consumption and share of renewable energy are used as energy inputs, and labor productivity and gross capital formation are used as economy inputs. On the other hand, GDP is used as a desired output, and CO2 emissions is used as one undesired output. The experimental results show that the 17 countries as a whole lacked eco-efficiency in 2013–2017, implying more efforts are required to improve their eco-efficiency.


2019 ◽  
Vol 70 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Jože Kropivšek ◽  
Matej Jošt ◽  
Petra Grošelj ◽  
Darko Motik ◽  
Andreja Pirc Barčić ◽  
...  

The wood industry, as a traditional sector, represents a very important part of the economy in terms of ensuring a sustainable development of society and transition to a low-carbon society in both countries studied, Slovenia and Croatia. For its further development, it is crucial to know the current position of the industry. The best way to achieve this is an analysis of financial data and international comparative evaluation of its operational efficiency. The aim of the research is to compare the relative efficiency of the wood industry using Data Envelopment Analysis (DEA) and the Malmquist Productivity Index (MI), focusing on the Slovenian and Croatian wood industry sectors (C16 and C31) for a recent five-year period (from 2013-2017). With this purpose, the combined measure DEA/MI was applied. The analysis includes only the highest rated companies with more than fi ve employees, divided into 12 clusters regarding the company size. As a result, it was established that clusters CRO-C31- micro, CRO-C16-micro and SI-C16-larger have the highest operational efficiency, due to the effects of different financial indicators, especially activity and liquidity ratios. In general, within the grouped clusters regarding country and subsector, groups SI-C16 and CRO-C31 achieve the highest values for the average of weighted score of efficiency, while CRO-C16 achieves the lowest values.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4902
Author(s):  
Biswaranjita Mahapatra ◽  
Chandan Bhar ◽  
Sandeep Mondal

Coal is the primary source of energy in India. Despite being the second-largest coal-producingcountry, there exists a significant difference in demand and production in India. In this study, the relativeefficiency of twenty-eight selected opencast mines from a large public sector undertaking coal companyin India for 2018–2019 was assessed and ranked by using data envelopment analysis (DEA). This studyused input-oriented DEA with efficiency decomposition to pure technical efficiency, technical efficiency,and scale efficiency. The result showed that 25% and 36% of mines were efficient in technical efficiencyand pure technical efficiency, respectively, whereas the eight mines scale efficiency was inefficient witha decreasing return to scale. Further, in this study, theMalmquist Productivity Index (MPI)was employedto measure the efficiency of the selected mines for three consecutive years (2016–2017 to 2018–2019).The result shows that in only three mines the efficiency is continuously improving from 2016–2017 to2018–2019, whereas in more than 20% of mines the efficiency score is decreasing. Comparing theMPIefficiency and productivity assessment throughout the years, changes in innovation and technology areincreasing from 2017–2018 to 2018–2019. Finally, the study concluded with a comprehensive evaluationof each variable with mines performance. The author formulated the strategies, which in turn help coalprofessionals to improve the efficiency of the mine.


Sign in / Sign up

Export Citation Format

Share Document