scholarly journals Comparison of Various Generations of Superporous Hydrogels Based on Chitosan-Acrylamide and In Vitro Drug Release

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shikha Bhalla ◽  
Manju Nagpal

The aim of the current research work was to prepare and evaluate different generations of superporous hydrogels (SPH) of acrylamide and chitosan using gas blowing technique and evaluate them for swelling, mechanical properties, FTIR, SEM, XRD, and in vitro drug release. The ingredients used were acrylamide, N,N′-methylene bisacrylamide, chitosan, Pluronic F127, ammonium per sulfate-N,N,N′,N′-tetramethylenediamine, and sodium bicarbonate. All ingredients were mixed sequentially with thorough stirring. The effect of different drying conditions on properties of SPH was also evaluated. Ethanol treated batched showed maximum swelling properties due to uniform pores as indicated in SEM studies. Equilibrium swelling time was less than 10 min in all batches. Freeze drying led to lowering of density which is also supported by porosity and void fraction data. Maximum mechanical strength was found in superporous hydrogel interpenetrating networks due to crosslinked polymeric network. 70% drug was released at the end of 2 h, and further the release was sustained till the end of 24 h. In vitro drug release kinetics showed that drug release occurs by diffusion and follows Super Case II transport indicating that mechanism of drug release is not clear. Superporous hydrogel interpenetrating networks can be successfully used as sustained release gastroretentive devices.

2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


2018 ◽  
Vol 8 (5) ◽  
pp. 465-474
Author(s):  
S PADMA PRIYA ◽  
AN Rajalakshmi ◽  
P Ilaveni

Objective: The objective of this research work is to develop and evaluate mucoadhesive microspheres of an anti-migraine drug for sustained release. Materials and Methods:  Mucoadhesive microspheres were prepared by emulsification method using Sodium alginate (SA), polyvinyl pyrrolidone (PVP) and Chitosan in the various drug-polymer ratios of 1:1, 1:2 and 1:3. Nine  formulations were formulated and  evaluated for  possible drug polymer interactions, percentage yield, micromeritic properties, particle size, drug content, drug entrapment efficiency, drug loading, swelling index, In-vitro wash off test, in vitro  drug release, surface morphology and release kinetics. Results: The results showed that no significant drug polymer interaction in FTIR studies. Among all the formulations SF3 containing sodium alginate showed 77.18% drug release in 6hrs. Conclusion: Amongst the developed mucoadhesive microspheres, SF3 formulation containing sodium alginate exhibited slow and sustained release in a controlled manner and it is a promising formulation for sustained release of Sumatriptan succinate. Keywords: Mucoadhesive microspheres, Sodium alginate, polyvinyl pyrrolidone, Chitosan, sustained release.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kenneth Chibuzor Ofokansi ◽  
Franklin Chimaobi Kenechukwu

Colon-targeted drug delivery systems (CTDDSs) could be useful for local treatment of inflammatory bowel diseases (IBDs). In this study, various interpolyelectrolyte complexes (IPECs), formed between Eudragit RL100 (EL) and chitosan (CS), by nonstoichiometric method, and tablets based on the IPECs, prepared by wet granulation, were evaluated as potential oral CTDDSs for ibuprofen (IBF). Results obtained showed that the tablets conformed to compendial requirements for acceptance and that CS and EL formed IPECs that showed pH-dependent swelling properties and prolonged the in vitro release of IBF from the tablets in the following descending order: 3 : 2 > 2 : 3 > 1 : 1 ratios of CS and EL. An electrostatic interaction between the carbonyl (–CO–) group of EL and amino (–) group of CS of the tablets formulated with the IPECs was capable of preventing drug release in the stomach and small intestine and helped in delivering the drug to the colon. Kinetic analysis of drug release profiles showed that the systems predominantly released IBF in a zero-order manner. IPECs based on CS and EL could be exploited successfully for colon-targeted delivery of IBF in the treatment of IBDs.


Author(s):  
Yella Sirisha ◽  
Gopala Krishna Murthy T E ◽  
Avanapu Srinivasa Rao

 Objective: The present research work is an attempt to determine the effect of various diluents and superdisintegrants on drug release of eletriptan orodispersible tablets and designs an optimized formulation using 22 factorial design. Further, evaluate the tablets for various pre-compression and post-compression parameters.Methods: The drug excipient compatibility study was conducted by infrared spectroscopy, differential scanning colorimetry and X-ray diffraction studies were conducted to test the purity of the drug. The tablets were formulated by direct compression method using spray dried lactose, mannitol, microcrystalline cellulose, starch as diluents and crospovidone, croscarmellose sodium, and sodium starch glycolate as superdisintegrants. The powder formulations were evaluated for pre-compression parameters such as bulk density, tapped density, Carr’s Index, Hausner’s ratio, and angle of repose. The tablets were evaluated for post-compression parameters such as the hardness, thickness, friability, weight variation, and disintegrating time in the oral cavity, in vitro drug release kinetics studies, and accelerated stability studies. The formulations were optimized by 22 factorial design.Results: The drug and excipients were compatible, and no interaction was found. The drug was pure, and all the pre-compression parameters were within Indian Pharmacopoeial Limits. Post-compression parameters were also within limits. The disintegration time was found to be 27 s for the formulation F29 containing Croscarmellose sodium (5%) and Mannitol as diluent, and in vitro drug release was found to be 99.67% in 30 min and follows first-order kinetics. This was also the optimized formulation by 22 factorial design with a p=0.013.Conclusion: The orodispersible tablets of eletriptan were successfully formulated, and the optimized formulation was determined that can be used in the treatment of migraine.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hitesh Chavda ◽  
Ishan Modhia ◽  
Anant Mehta ◽  
Rupal Patel ◽  
Chhagan Patel

Bioadhesive superporous hydrogel composite (SPHC) particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content,in vitrodrug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.


Author(s):  
Gopa Roy Biswas ◽  
Debolina Roy ◽  
Sutapa Biswas Majee

Objective: Super porous hydrogels (SPHs), a novel drug delivery system can be developed to retain drugs in the gastric medium. The aim of the present investigation was to prepare superporous hydrogels (SPHs) of Atenolol to release the drug in sustained manner in the gastric environment and study the effect of two grades of hydroxyl methyl cellulose along with Carbopol 971p on the physico mechanical properties and drug release kinetics of the formulations. Methods: Superporous hydrogels of Atenolol were prepared with two grades of Hydroxy Propyl Methyl Cellulose (HPMC K100M and HPMC K15 M) along with Carbopol 971p the structural morphology of hydrogel was observed by Scanning Electron Microscopy. Study on Physico mechanical characteristics and drug release were done. Results: Scanning Electron microscopy studies of the formulations revealed the presence of large number of pores in different size ranges like 1 µm, 2 µm, 10 µm, confirming the formulations as superporous hydrogel. A correlation had been found between porosity, density and % swelling index. The drug release data from the formulations obeyed Higuchi and Korsmeyer-Peppas kinetics. Further, the data were fitted to the Kopcha model for confirming drug release by a combination of diffusion-controlled and chain relaxation–swelling mechanism. Conclusion: Among the six formulations, where HPMC K15 M and HPMC K100 M both were present, the gel became more hydrophobic and retarded the release of drug. From the drug release kinetics data, it can be concluded that the diffusion mechanism predominated the drug release process, leading to quasi diffusion and Fickian diffusion mechanism.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ganesh B. Patil ◽  
Saurabh S. Singh ◽  
Ketan P. Ramani ◽  
Vivekanand K. Chatap ◽  
Prashant K. Deshmukh

The aim of the proposed research work was to develop a novel dual-compartment capsule (NDCC) with polymeric disc for gastroretentive dosage form, which will ultimately result in better solubility and bioavailability of Ofloxacin. Floating ring caps were formulated by using different natural polymers, separating ring band and swellable polymer located at the bottom of capsule. Formulated ring caps were assessed for coating thickness, In vitro buoyancy, In vitro drug release, release kinetics and stability studies. Coating attained by the capsule shell was found to be 0.0643 mm. Depending on nature of natural polymer used, most of the formulations showed buoyancy for more than 9 hrs. Developed formulation demonstrated considerably higher drug release up to 9 hrs. The developed formulation FE2 depicted the drug release according to Korsmeyer-Peppas model. There was not any significant change in performance characteristics of developed ring caps after subjecting them to stability studies. The present study suggests that the use of NDCC for oral delivery of Ofloxacin could be an alternative to improve its systemic availability which could be regulated by the floating approach. The designed dosage system can have futuristic applications over payloads which require stomach-specific delivery.


Author(s):  
Haider Mohammed Jihad ◽  
Entidhar J. Al- Akkam

  The preferred route of drug administration is the oral route, but drugs with narrow absorption window in the gastrointestinal tract are still challenging. The ability to extend and monitor the gastric emptying time is a valuable tool for processes remaining in the stomach longer than other traditional dosage forms. The purpose of this study was to formulate and evaluate gastroretentive superporous hydrogel (SPH) of carvedilol with view to improve its solubility and increase gastric residence time in order to get sustained release formulas via utilization of various kinds and concentrations of hydrophilic polymers then after, incorporate the best prepared formula into capsules.  Sixteenth formulae of SPH hybrid were prepared by gas blowing technique from the following materials; monomers (Poly vinyl alcohol, and Acrylamide), cross-linkers (Methylene bisacrylamide, and glutaraldehyde), hybrid agent (Chitosan), foaming agent (NaHCO3) and foam stabilizer (Tween 80). Different amounts or concentrations of these materials were utilized to investigate their effect on SPH properties (density, porosity, floating, drug content, drug release, swelling time, and swelling ratio). The soaking procedure was utilized for loading of carvedilol into SPH hybrid (6.25mg/2.5g SPH).  After analysis the results statistically and application the similarity factor (f2) equation, formula F8 was selected as the best formula and incorporated into capsules.  The drug release data were applied to different mathematical kinetics and the results were shown to be fitted to Higuchi model and the release mechanism was (non fickian) diffusion. The overall results suggested that the proposed SPH hybrid drug delivery system is encouraging for carvedilol specific delivery to the stomach.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 26-36
Author(s):  
S. Vinaya Srikala ◽  
Nagam Santhi Priya ◽  
Rama Rao Nadendla

In the pharmaceutical field controlled release products have the ability to maintain desired medicament concentration or a longer period of time. Certain drugs are relatively insoluble in water and have high dose requirements that render unsuitable formulation difficulties in sustained release formulations. Nitazoxanide which is a high dose water insoluble antiprotozoal drug was formulated with the aim. To modulate gastro-retentive dosage form based on the superporous hydrogel composites. Foaming technique was used in the preparation of SPH composites. The superporous hydrogels were extremely sensitive to pH of swelling media and good porosity. Superporous hydrogels tablets of nitazoxanide showed good pre-compressional and post-compressional properties. Formulation X is the best formulation containing chitosan, polyvinyl alcohol, formaldehyde, exhibited good swelling ratio. The compatibility studies were performed by Fourier Transform Infrared (FT-IR) Spectroscopic Studies, Differential Scanning Calorimetry Studies (DSC). All formulations were evaluated for stability, drug content, and kinetic drug release & in-vitro drug release profile. It was concluded that the proposed gastro-retention drug delivery provides a different supply of nitazoxanide directly to the stomach. Keywords: Nitazoxanide, Anti protozoal, foaming technique, Chitosan


Author(s):  
Anjali P.B ◽  
Jawahar N. ◽  
Jubie S. ◽  
Neetu Yadav ◽  
Selvaraj A. ◽  
...  

Background: : Epilepsy is a genuine neurological turmoil that effects around 50 million individuals around the world. Practically 30% of epileptic patients experience the ill effects of pharmaco-obstruction, which is related with social seclusion, subordinate conduct, low marriage rates, joblessness, mental issues and diminished personal satisfaction. At present accessible antiepileptic drugs have a restricted viability, and their negative properties limit their utilization and cause challenges in patient administration. Gabapentin 1-(aminomethyl)cyclohexane acetic acid, Gbp , (trade name Neurontin), a structural analog of γ-aminobutyric acid (GABA), BCS class 3 drug with having permeability issues. Objective: This work was an attempt to formulate and characterize a new approach to treat epilepsy by targeting to Phospholipase A2 Enzyme through Nanostructured Lipid Carrier. Methods: Docking studied carried out using Accelrys Discovery studio 4.1 Client and gabapentin and phosphotidylcholine were conjugated through chemical conjugation. Nanostructured lipid carrier (NLC) was prepared using hot homogenization technique. Results: The libdock score of Gabapentin- Phosphotidylcholine conjugate (192.535) were found to be more than Gabapentin (77.1084) and Phosphotidylcholine (150.212). For the optimized formulation the particle size (50.08), zeta potential (-1.48), PDI (0.472) and entrapment efficiency (77.8) was observed. The NLC was studies for in-vitro drug release studies and release kinetics. Finally found that the drug release from the NLC followed Higuchi release kinetic and the mode of drug release from the NLC was found to be Non- Fickian diffusion. Conclusion: The formulated Nanostructured lipid carrier of Gabapentin-Phosphotidylcholine conjugate may be able to use to prevent seizure.


Sign in / Sign up

Export Citation Format

Share Document