scholarly journals Simple, Rapid and Sensitive UV-Visible Spectrophotometric Method for Determination of Antidepressant Amitriptyline in Pharmaceutical Dosage Forms

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Pankaj Soni ◽  
Deepak Sinha ◽  
Rajmani Patel

The paper describes a new and simple approach for spectrophotometric determination of tricyclic antidepressant drug amitriptyline. Enhancement of the colour intensity of the Fe(III)-SCN−complex on addition of the drug amitriptyline forms the basis of the proposed method. The value of molar absorptivity of the Fe(III)-SCN−amitriptyline ion pair complex in terms of the drug lies in the range of (2.82–3.36) × 103 L·mol−1·cm−1at the absorption maximum 460 nm. The detection limit of the method was 0.3 μg·mL−1. The slope, intercept, and correlation coefficients for the present method were found to be 0.008, 0.002, and +0.998, respectively. The effect of analytical variables on the determination of the drug and the composition of the complex are discussed in the paper. The method is applicable in the determination of amitriptyline in pharmaceutical preparations.

2015 ◽  
Vol 12 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Baghdad Science Journal

A spectrophotometric method has been proposed for the determination of two drugs containing phenol group [phenylephrine hydrochloride (PHP) and salbutamol sulphate (SLB)] in pharmaceutical dosage forms. The method is based on the diazotization reaction of metoclopramide hydrochloride (MCP) and coupling of the diazotized reagent with drugs in alkaline medium to give intense orange colored product (?max at 470 nm for each of PHP and SLB). Variable parameters such as temperature, reaction time and concentration of the reactants have been analyzed and optimized. Under the proposed optimum condition, Beer’s law was obeyed in the concentration range of 1-32 and 1-14 ?g mL-1 for PHP and SLB, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for each of PHP and SLB were 0.60, 0.52 ?g mL-1 and 2.02, 1.72 ?g mL-1, respectively. No interference was observed from common excipients present in pharmaceutical preparations. The good correlation coefficients and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical preparations, which was compared statistically with reference methods by means of t- test and F- test and were found not to differ significantly at 95% confidence level. The procedure was characterized by its simplicity with accuracy and precision.


2010 ◽  
Vol 7 (1) ◽  
pp. 607-613 ◽  
Author(s):  
Baghdad Science Journal

A simple, cheap, fast, accurate, Safety and sensitive spectrophotometric method for the determination of sulfamethaxazole (SFMx), in pure form and pharmaceutical dosage forms. has been described The Method is based on the diazotization of the drug by sodium nitrite in acidic medium at 5Cº followed by coupling with salbutamol sulphate (SBS) drug to form orange color the product was stabilized and measured at 452 nm Beer’s law is obeyed in the concentration range of 2.5-87.5 ?g ml-1 with molar absorptivity of 2.5x104 L mole-1 cm-1. All variables including the reagent concentration, reaction time, color stability period, and sulfamethaxazole /salbutamol ratio were studied in order to optimize the reaction conditions. No interferences were observed Results of analysis were validated statistically and by recovery studies. These methods are successfully employed for the determination of sulfamethaxazole in some pharmaceutical preparations.. The developed method is easy to use and accurate for routine studies relative to HPLC and other techniques.


Author(s):  
Nanda Aflyona Darma ◽  
Roslinda Rasyid ◽  
Harrizul Rivai

Captopril is the most commonly prescribed ACE-Inhibitor class of drugs because it is easily accessible and affordable. Therefore, to ensure drug quality, captopril levels were determined. This review article aims to provide an overview of the various analytical techniques that have been carried out in selecting the groups of captopril in both pharmaceutical dosage forms and biological matrices. Some of these analytical methods include the UV-Visible spectrophotometric method, high-performance liquid chromatography (HPLC), voltammetry, and flow injection. The data collection process in this review article is to collect research journals through trusted sites in the last ten years (2011-2021) with the search keywords "Determination of Captopril," "Analysis of Captopril on Pharmaceutical Preparations," and Analysis of Captopril on Biological Matrices." From the data that has been collected, the voltammetric method is the most widely used analytical technique in determining captopril for both pharmaceutical preparations and biological matrices in the last ten years.


2007 ◽  
Vol 4 (4) ◽  
pp. 496-501 ◽  
Author(s):  
M. Vamsi Krishna ◽  
D. Gowri Sankar

Simple, rapid and sensitive spectrophotometric procedures were developed for the analysis of Alfuzosin hydrochloride (AFZ) in pure form as well as in pharmaceutical formulations. The methods are based on the reaction of AFZ with nitrite in acid medium to form diazonium ion, which is coupled with ethoxyethylenemaleic ester (Method A) or ethylcyanoacetate (Method B) or acetyl acetone (method C) in basic medium to form azo dyes, showing absorption maxima at 440, 465 and 490 nm respectively. Beer’s law is obeyed in the concentration of 4-20 μg/mL of AFZ for methods A, B and 3-15 μg/mL of AFZ for method C. The molar absorptivity and sandell’s sensitivity of AFZ- ethoxyethylenemaleic ester, AFZ- ethylcyanoacetate and AFZ-acetyl acetone are1.90 × 104, 0.022; 1.93 × 104, 0.021 and 2.67 × 104L mole-1cm-1, 0.015 μg cm-2respectively. The optimum reaction conditions and other analytical parameters were evaluated. The methods were successfully applied to the determination of AFZ in pharmaceutical formulations.


2007 ◽  
Vol 4 (2) ◽  
pp. 173-179 ◽  
Author(s):  
K. Basavaiah ◽  
U. R. Anil Kumar

A simple spectrophotometric method is proposed for the determination of zidovudine(ZDV) in bulk drug and in pharmaceutical preparations. The method is based on the oxidation of ZDV by a known excess of oxidant N-bromosuccinimide (NBS), in buffer medium of pH 1.5, followed by the estimation of unreacted amount of oxidant with metol and sulphanilic acid. The reacted oxidant corresponds to the amount ZDV. The purple-red reaction product absorbs maximally at 530 nm and Beer’s law is obeyed over a range 5 to 75 μg mL-1. The apparent molar absorptivity is calculated to be 5.1×103L mol-1cm-1, and the corresponding Sandell sensitivity value is 0.052 μg cm-2. The limit of detection and quantification are found to be 0.90 and 2.72, respectively. Intra-day and inter-day precision and accuracy of the developed methods were evaluated as per the current ICH guidelines. The method was successfully applied to the assay of ZDV in tablet/capsule preparations and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common tablet/capsule excipients. The accuracy of the method was further ascertained by performing recovery studies via standard-addition method.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (03) ◽  
pp. 44-51
Author(s):  
B. Sabbagh ◽  
B. V. S. Lokesh ◽  
G. A. Akouwah ◽  

Two methods were developed for the determination of dapagliflozin (DAPA) in pure form and in tablets. The procedure utilized was UV-Visible Spectroscopy and RP-HPLC with PDA detector to quantify DAPA in bulk and tablets. The sensitive linear range was identified for both methods within 0.5-5.0μg/mL. The linear regression analysis was identified for both methods with correlation coefficient(r)>0.99. The LOD and LOQ values were found to be 0.05 μg/mL and 0.5 μg/mL for the method by UV-Spectroscopy. The molar absorptivity (ε) was calculated as 1.27 X 105 L.mol-1cm-1. The RP-HPLC method produced LOD and LOQ values of 1.0 ng/mL and 0.5 μg/mL. Both methods were simple, precise, reproducible to quantify the amount of unknown in bulk as well as in tablets and estimated accurately within the range of 100.0±0.5%. Statistical analysis was performed on the data obtained. There was no significant difference between the developed and reported methods with p>0.05. Both methods can be applied for routine analysis of DAPA in bulk and tablets with good accuracy and precision.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Darwish ◽  
Heba H. Abdine ◽  
Sawsan M. Amer ◽  
Lama I. Al-Rayes

Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak () at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 g . The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity () was L  1 . The limits of detection and quantitation were 0.3 and 0.8 g , respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was %. The results obtained by the proposed method were comparable with those obtained by the official method.


2009 ◽  
Vol 15 (2) ◽  
pp. 69-76 ◽  
Author(s):  
S.M. Al-Ghannam ◽  
A.M. Al-Olyan

A sensitive spectrophotometric method was developed for the determination of some 1,4-dihydropyridine compounds namely, nicardipine and isradipine either in pure form or in pharmaceutical preparations. The method is based on the reduction of nicardipine and isradipine with zinc powder and calcium chloride followed by further reduction with sodium pentacyanoaminoferrate (II) to give violet and red products having the absorbance maximum at 546 and 539 nm with nicardipine and isradipine, respectively. Beer's law was obeyed over the concentration range 8.0-180 ?g/ml with the detection limit of 1.67 ?g/ml for nicardipine and 8.0-110 ?g/ml with the detection limit of 1.748 ?g/ml for isradipine. The analytical parameters and their effects on the reported methods were investigated. The molar absorptivity, quantization limit, standard deviation of intercept (Sa), standard deviation of slope (Sb) and standard deviation of the residuals (Sy/x) were calculated. The composition of the result compounds were found 1:1 for nicardipine and 1:2 for isradipine by Job's method and the conditional stability constant (Kf) and the free energy changes (?G) were calculated for compounds formed. The proposed method was applied successfully for the determination of nicardipine and isradipine in their dosage forms. The results obtained were in good agreement with those obtained using the reference or official methods. A proposal of the reaction pathway was presented.


2009 ◽  
Vol 6 (3) ◽  
pp. 570-577
Author(s):  
Baghdad Science Journal

Nitroso-R-salt is proposed as a sensitive spectrophotometric reagent for the determination of paracetamol in aqueous solution. The method is based on the reaction of paracetamol with iron(III) and subsequent reaction with nitroso-R-salt to yield a green colored complex with maximum absorption at 720 nm. Optimization of the experimental conditions was described. The calibration graph was linear in the concentration range of 0.1 – 2.0 ?g mL-1 paracetamol with a molar absorptivity of 6.9 × 104 L mol-1 cm-1. The method was successfully applied to the determination of paracetamol in pharmaceutical preparations without any interference from common excipients. The method has been statistically evaluated with British Pharmacopoeia method and no statistical difference between methods was found at the 95% confidence level.


2013 ◽  
Vol 10 (3) ◽  
pp. 1005-1013 ◽  
Author(s):  
Baghdad Science Journal

A simple, accurate, precise, rapid, economical and a high sensitive spectrophotometric method has been developed for the determination of tadalafil in pharmaceutical preparations and industrial wastewater samples, which shows a maximum absorbance at 204 nm in 1:1 ethanol-water. Beer's law was obeyed in the range of 1-7?g/ mL ,with molar absorptivity and Sandell ? s sensitivity of 0.783x105l/mol.cm and 4.97 ng/cm2respectively, relative standard deviation of the method was less than 1.7%, and accuracy (average recovery %) was 100 ± 0. 13. The limits of detection and quantitation are 0.18 and 0.54 µg .ml-1, respectively. The method was successfully applied to the determination of tadalafil in some pharmaceutical formulations (tablets) and industrial wastewater samples. The proposed method was validated by sensitivity and precision which proves suitability for the routine analysis of tadalafil in true samples.


Sign in / Sign up

Export Citation Format

Share Document