scholarly journals The Role of Hypoxia in Orthodontic Tooth Movement

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. Niklas ◽  
P. Proff ◽  
M. Gosau ◽  
P. Römer

Orthodontic forces are known to have various effects on the alveolar process, such as cell deformation, inflammation, and circulatory disturbances. Each of these conditions affecting cell differentiation, cell repair, and cell migration, is driven by numerous molecular and inflammatory mediators. As a result, bone remodeling is induced, facilitating orthodontic tooth movement. However, orthodontic forces not only have cellular effects but also induce vascular changes. Orthodontic forces are known to occlude periodontal ligament vessels on the pressure side of the dental root, decreasing the blood perfusion of the tissue. This condition is accompanied by hypoxia, which is known to either affect cell proliferation or induce apoptosis, depending on the oxygen gradient. Because upregulated tissue proliferation rates are often accompanied by angiogenesis, hypoxia may be assumed to fundamentally contribute to bone remodeling processes during orthodontic treatment.

2021 ◽  
Vol 22 (5) ◽  
pp. 2388
Author(s):  
Masaru Yamaguchi ◽  
Shinichi Fukasawa

The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.


Author(s):  
Daniela Gomides SAMARTINI ◽  
Manuela Ortega Marques RODRIGUES ◽  
Carina de Sousa SANTOS

ABSTRACT With improvements in dental aesthetic requirements an increasing number of adults are seeking orthodontic treatment that, along with current lifestyle and eating habits of the adult population, makes orthodontists more likely to encounter patients with metabolic disorders such as diabetes mellitus. Speculated that the diabetic patient during orthodontic treatment may not experience a physiological healing process as a healthy patient. Therefore, the objective of this work is to present a current and contextualized review of the mechanisms by which uncontrolled diabetes mellitus impacts on bone remodeling and orthodontic tooth movement during the application of orthodontic forces. The following databases were searched MEDLINE (via PubMed), Scopus, Web of Science, SciELO, LILACS and open grey with these MeSH “bone remodeling”, “diabetes mellitus”, “orthodontic” and “tooth movement”. Five articles remained after search strategy and were analyzed. In sum, no clinical studies were found, the evidence was limited to animal studies (rats). The results suggest that there are differences in bone remodeling and tooth movement during the application of orthodontic forces in animals with diabetes mellitus when compared to healthy animals, especially when the disease is associated with periodontal disease. However, the results are still controversial and may be due to different study protocols.


2021 ◽  
Vol 11 (16) ◽  
pp. 7244
Author(s):  
Masaru Yamaguchi ◽  
Hiroyuki Mishima

Orthodontic root resorption (ORR) is an unintended side effect of orthodontic treatment, and severe ORR can affect treatment outcome. Receptor activator of nuclear factor kappa-B ligand (RANKL) has been detected in the resorbed cementum and periodontal (PDL) tissues exposed to excessive orthodontic forces. Recent studies have demonstrated that PDL cells and cementoblasts express RANKL that may play a role in ORR during orthodontic tooth movement. It is known that the hardness of cementum in human maxillary premolars differs among individuals. Furthermore, this difference has been reported to be attributed to differences in the calcium (Ca)/phosphorus (P) ratio. A correlation was observed between the Vickers hardness and Ca/P ratio of the cementum in the apical region. These findings suggest that cementum hardness and the Ca/P ratio may be indirectly involved in ORR caused by orthodontic forces. In this review, it aims to identify the role of RANKL and involvement of cementum in ORR.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Amarjot Singh ◽  
Gurveen Gill ◽  
Harsimrat Kaur ◽  
Mohamed Amhmed ◽  
Harpal Jakhu

2020 ◽  
Vol 29 (2) ◽  
pp. 55-62 ◽  
Author(s):  
Xiaoyun Ma ◽  
Mengjiao Zhu ◽  
Xiaohui Mi ◽  
Fengshan Chen

2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 796
Author(s):  
Christian Kirschneck ◽  
Nadine Straßmair ◽  
Fabian Cieplik ◽  
Eva Paddenberg ◽  
Jonathan Jantsch ◽  
...  

During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.


2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2009 ◽  
Vol 79 (6) ◽  
pp. 1126-1132 ◽  
Author(s):  
Xiulin Yan ◽  
Jiang Chen ◽  
Yuquan Hao ◽  
Yan Wang ◽  
Li Zhu

Abstract Objective: To investigate the changes of caspase-1 in orthodontic tooth movement and to determine whether the changes are phase-specific. Materials and Methods: Eighty Wistar rats were included in this study. Sentalloy closed-coil springs were placed to induce a mesial traction force on the lower right first molar. The animals were killed after 1, 3, 7, and 14 days (n = 20 at each time point). The mandibles of 10 rats were sampled for histomorphometric analysis and immunohistochemical assay, and the periodontal tissues of 10 other rats were sampled for detecting caspase-1 mRNA and protein by real-time RT-PCR and by Western blotting, respectively. Results: The inflammatory reaction was evident in paraffin sections with hematoxylin-eosin staining. The immunohistochemical assay showed that orthodontic forces significantly increased the number of caspase-1-positive cells in the periodontal ligament (PDL). Mechanical force triggered an increase of caspase-1 mRNA in periodontal tissues. The expression of caspase-1 mRNA increased from day 1, reached the peak on day 3, and then decreased. The results of Western blotting indicated that the levels of both procaspase-1 and P20 subunit significantly increased after the application of orthodontic forces, compared with those in controls (P < .05). Conclusion: Caspase-1 level increases during orthodontic tooth movement and changes with different phases, which might play a significant role in orthodontic tooth movement.


Sign in / Sign up

Export Citation Format

Share Document