scholarly journals Changes of Caspase-1 after the Application of Orthodontic Forces in the Periodontal Tissues of Rats

2009 ◽  
Vol 79 (6) ◽  
pp. 1126-1132 ◽  
Author(s):  
Xiulin Yan ◽  
Jiang Chen ◽  
Yuquan Hao ◽  
Yan Wang ◽  
Li Zhu

Abstract Objective: To investigate the changes of caspase-1 in orthodontic tooth movement and to determine whether the changes are phase-specific. Materials and Methods: Eighty Wistar rats were included in this study. Sentalloy closed-coil springs were placed to induce a mesial traction force on the lower right first molar. The animals were killed after 1, 3, 7, and 14 days (n = 20 at each time point). The mandibles of 10 rats were sampled for histomorphometric analysis and immunohistochemical assay, and the periodontal tissues of 10 other rats were sampled for detecting caspase-1 mRNA and protein by real-time RT-PCR and by Western blotting, respectively. Results: The inflammatory reaction was evident in paraffin sections with hematoxylin-eosin staining. The immunohistochemical assay showed that orthodontic forces significantly increased the number of caspase-1-positive cells in the periodontal ligament (PDL). Mechanical force triggered an increase of caspase-1 mRNA in periodontal tissues. The expression of caspase-1 mRNA increased from day 1, reached the peak on day 3, and then decreased. The results of Western blotting indicated that the levels of both procaspase-1 and P20 subunit significantly increased after the application of orthodontic forces, compared with those in controls (P < .05). Conclusion: Caspase-1 level increases during orthodontic tooth movement and changes with different phases, which might play a significant role in orthodontic tooth movement.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
L. Feller ◽  
R. A. G. Khammissa ◽  
I. Schechter ◽  
A. Moodley ◽  
G. Thomadakis ◽  
...  

The mechanical stimuli generated by orthodontic forces cause deformation of extracellular matrices and cells, vascular changes, inflammation, and the release of active biological agents generating a complex multifactorial sequence of biological events culminating in bone remodelling enabling orthodontic tooth movement. Orthodontic forces on the teeth generate stresses in periodontal tissues according to a number of variables including the type (continuous, interrupted, or intermittent), magnitude, direction, and frequency of the applied load. Whether the strain is compressive or tensile determines whether bone deposition or bone resorption will occur. The mechanically induced strains mediate structural changes in extracellular matrices and in cells, consequently affecting cellular gene expression and function. In the extracellular matrix, mechanosensing molecules integrated into the structure of various proteins can be activated upon load-induced protein unfolding. These specialized molecules have the capacity to sense and then to convert microenvironmental biomechanical stimuli into intracellular biochemical signals that interact to generate a coordinated tissue response. It is also possible that the applied force may directly cause nuclear deformation with configurational changes in chromatin, thus influencing gene expression. In this review article we summarize the current general concepts of mechanotransduction influencing the remodelling of periodontal tissues thus enabling tooth movement in response to applied orthodontic loads.


2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Simina Chelărescu ◽  
Petra Șurlin ◽  
Mioara Decusară ◽  
Mădălina Oprică ◽  
Eugen Bud ◽  
...  

Background: The crevicular fluid analysis represents a useful diagnosis tool, with the help of which noninvasive cellular metabolic activity can be analyzed. The aim of the study is to investigate comparatively IL1β and IL6 in the gingival crevicular fluid of clinically healthy adolescents and young adults during the acute phase of orthodontic treatment. Methods: Gingival crevicular fluid was collected from 20 patients (aged between 11 and 28) undergoing orthodontic treatment. Measurements were taken before (T0) and after 24 h after distalization forces were activated (T1). IL1β and IL 6 were analyzed using Elisa tests. The statistical tests used were two-sided t tests. Results: Between the two time periods there was a significant raise both in the crevicular fluid rate (0.57 µL at T0 vs. 0.95 µL at T1, p = 0.001) and in IL1β levels (15.67 pg/µL at T0 vs. 27.94 pg/µL at T1, p = 0.009). We were able to identify IL6 only in a third of the sites. There is a significantly increased level of ILβ at T1 in adolescents, more than in young adults (42.96 pg/µL vs. 17.93 pg/µL, p = 0.006). Conclusions: In the early stage of orthodontic treatment, the periodontal tissues of adolescents are more responsive to orthodontic forces than those of young adults.


2021 ◽  
Vol 11 (11) ◽  
pp. 5268
Author(s):  
Zohaib Khurshid ◽  
Faris Yahya Asiri

Objective: The aim of this review is to summarize the effects of local and systemic PTH administration on periodontal tissues during orthodontic tooth movement. Materials and methods: An electronic search was conducted on the following databases: PubMed/MEDLINE, Google Scholar, SCOPUS and Embase. On PubMed/MEDLINE, the Medical Subject Headings (MeSH) keywords used were: “orthodontic tooth movement” OR (“tooth” (All Fields) AND “tooth movement” (All Fields)) OR “tooth movement” (All Fields)) AND (“parathyroid hormone”); all studies included using CONSORT. Results: After elimination of duplicates and articles not meeting our inclusion criteria, seven animal studies were included in this review. Although the majority of the studies suggest that PTH may a have a favorable outcome on OTM, most studies were found to have several sources of bias. Conclusion: Animal studies with minimal bias and long-term clinical studies are needed to ascertain the efficacy of intermittent PTH administration in improving the rate and retention of OTM.


2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2009 ◽  
Vol 88 (8) ◽  
pp. 752-756 ◽  
Author(s):  
A. Miyagawa ◽  
M. Chiba ◽  
H. Hayashi ◽  
K. Igarashi

During orthodontic tooth movement, the activation of the vascular system in the compressed periodontal ligament (PDL) is an indispensable process in tissue remodeling. We hypothesized that compressive force would induce angiogenesis of PDL through the production of vascular endothelial growth factor (VEGF). We examined the localization of VEGF in rat periodontal tissues during experimental tooth movement in vivo, and the effects of continuous compressive force on VEGF production and angiogenic activity in human PDL cells in vitro. PDL cells adjacent to hyalinized tissue and alveolar bone on the compressive side showed marked VEGF immunoreactivity. VEGF mRNA expression and production in PDL cells increased, and conditioned medium stimulated tube formation. These results indicate that continuous compressive force enhances VEGF production and angiogenic activity in PDL cells, which may contribute to periodontal remodeling, including angiogenesis, during orthodontic tooth movement.


2021 ◽  
Vol 22 (5) ◽  
pp. 2388
Author(s):  
Masaru Yamaguchi ◽  
Shinichi Fukasawa

The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.


2017 ◽  
Vol 16 ◽  
pp. 1-8
Author(s):  
Noraini Abu Bakar ◽  
Wisam Kamil ◽  
Lina Al Bayati ◽  
Basma Ezzat Mustafa

Introduction: During orthodontic tooth movement, the early response of periodontal tissues to mechanical stress is an acute inflammatory reaction. Mechanical stress from orthodontic appliances is believed to induce cells in the periodontal ligament (PDL) to form biologically active substances, such as enzymes and cytokines, responsible for connective tissue remodeling (Nishijima Y et al 2006). Leptin, a polypeptide hormone has been classified as a cytokine (Zhang et al 1994). Earlier findings concluded that leptin at high local concentrations protects the host from inflammation and infection as well as maintaining bone levels. It has been also suggested that leptin plays a significant role in bone formation by its direct effect on osteoblasts (Alparslan et al 2010). This pilot study aimed to study leptin in saliva and its association with tooth movement during initial orthodontic alignment. Objectives: To determine if there are any differences in saliva leptin level before and after orthodontic alignment. Material and methods: Ten orthodontic patients (7 girls and 3 boys; mean age, 16.76 ± 1.1 years) with crowding (up to 5mm) that required orthodontic fixed appliances, on a non-extraction basis as part of the treatment plan, were recruited in this longitudinal study. Orthodontic study models were constructed at baseline and at 6- weeks after orthodontic treatment commenced. Full fixed orthodontic appliances with initial 0.014” Nickel Titanium archwire placed. The amount of crowding was measured, before and after initial alignment with an electronic digital caliper (Max-Cal, Japan Micrometer Ltd, Tokyo, Japan) with an accuracy of up to 0.01mm. Unstimulated morning saliva sample were collected at all visits, after at least an 8-hour period of fasting and no-toothbrushing. After centrifugation (4000x g;10min), the samples were stored at -25C and tested using Leptin Abnova LEP Human ELISA kit (KA3080) which was subsequently analyzed. Subjects’ periodontal health status was also monitored throughout the study. Ethical approval (ID IREC 262) was received on 7th April 2014 from International Islamic University Malaysia Research Ethics Committee (IREC). Results: Leptin concentration in saliva was significantly decreased in a time-dependant manner (t(9)=8.60, p<0.001), from before orthodontic treatment (7016.45± 425.15 pg/mL) and 6 weeks after bond-up (4901.92±  238.64 pg/mL). Conclusion: Leptin concentration in saliva is decreased during orthodontic tooth movement in initial alignment stage.


2017 ◽  
Vol 32 (7) ◽  
pp. 1479-1487 ◽  
Author(s):  
Mônica Fernandes Gomes ◽  
Maria da Graças Vilela Goulart ◽  
Lilian Chrystiane Giannasi ◽  
Cybelle Mori Hiraoka ◽  
Gabriela de Fátima Santana Melo ◽  
...  

2007 ◽  
Vol 86 (11) ◽  
pp. 1089-1094 ◽  
Author(s):  
I. Andrade ◽  
T.A. Silva ◽  
G.A.B. Silva ◽  
A.L. Teixeira ◽  
M.M. Teixeira

Orthodontic tooth movement is dependent on osteoclast activity. Tumor necrosis factor (TNF)-α plays an important role, directly or via chemokine release, in osteoclast recruitment and activation. This study aimed to investigate whether the TNF receptor type 1 (p55) influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and p55-deficient mice (p55−/−). Levels of TNF-α and 2 chemokines (MCP-1/CCL2, RANTES/CCL5) were evaluated in periodontal tissues. A significant increase in CCL2 and TNF-α was observed in both groups after 12 hrs of mechanical loading. However, CCL5 levels remained unchanged in p55−/− mice at this time-point. The number of TRAP-positive osteoclasts in p55−/− mice was significantly lower than that in WT mice. Also, there was a significantly smaller rate of tooth movement in p55−/− mice. Analysis of our data suggests that the TNFR-1 plays a significant role in orthodontic tooth movement that might be associated with changes in CCL5 levels.


Sign in / Sign up

Export Citation Format

Share Document