scholarly journals Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement

2021 ◽  
Vol 22 (5) ◽  
pp. 2388
Author(s):  
Masaru Yamaguchi ◽  
Shinichi Fukasawa

The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.

Author(s):  
Janvi Mody ◽  
Dishani Jain ◽  
Shrey Mehta ◽  
Divya Bhat ◽  
Anjali Nagrik ◽  
...  

With an increasing number of patients seeking orthodontic treatment, it often poses a challenge to the attending orthodontist to seek modalities that may promote accelerated tooth movement without compromising the underlying tissues and periodontium. Hence, PAOO (Periodontal accelerated osteogenic orthodontics was introduced in order to overcome current conventional treatment limitations. It seeks to combine selective bone corticotomy, hard tissue grafting along with the application of orthodontic forces, therefore promoting an increase in the width of the alveolar bone, lesser root resorption and lesser chair side appointments. This procedure aims at accelerating tooth movement and providing long-term improvement of the periodontium, decreased need for extractions, thereby augmenting gingival esthetics. The aim of this review was to summarize current literature regarding the role of PAOO in orthodontics.


2011 ◽  
Vol 11 ◽  
pp. 1788-1803 ◽  
Author(s):  
Shahrul Hisham Zainal Ariffin ◽  
Zulham Yamamoto ◽  
lntan Zarina Zainol Abidin ◽  
Rohaya Megat Abdul Wahab ◽  
Zaidah Zainal Ariffin

Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment.


2021 ◽  
Vol 11 (16) ◽  
pp. 7244
Author(s):  
Masaru Yamaguchi ◽  
Hiroyuki Mishima

Orthodontic root resorption (ORR) is an unintended side effect of orthodontic treatment, and severe ORR can affect treatment outcome. Receptor activator of nuclear factor kappa-B ligand (RANKL) has been detected in the resorbed cementum and periodontal (PDL) tissues exposed to excessive orthodontic forces. Recent studies have demonstrated that PDL cells and cementoblasts express RANKL that may play a role in ORR during orthodontic tooth movement. It is known that the hardness of cementum in human maxillary premolars differs among individuals. Furthermore, this difference has been reported to be attributed to differences in the calcium (Ca)/phosphorus (P) ratio. A correlation was observed between the Vickers hardness and Ca/P ratio of the cementum in the apical region. These findings suggest that cementum hardness and the Ca/P ratio may be indirectly involved in ORR caused by orthodontic forces. In this review, it aims to identify the role of RANKL and involvement of cementum in ORR.


1996 ◽  
Vol 33 (4) ◽  
pp. 277-283 ◽  
Author(s):  
Mohammed Zakir Hossain ◽  
Shingo Kyomen ◽  
Kazuo Tanne

This study was conducted to evaluate biologic responses of autogenous bone (particulate marrow and cancellous bone; PMCB) and beta-tricalcium phosphate ceramics (TCPC) to orthodontic stimuli. Nine dogs served as the experimental animals; three dogs underwent orthodontic tooth movement after grafting, three dogs received PMCB grafting without tooth movement, and three dogs received TCPC grafting without tooth movement. Immediately after extraction of the upper second and/or third incisors, the maxillary alveolar bone was resected bilaterally. Autogenous PMCB obtained from the iliac bone and TCPC were transplanted into each bone defect. Experimental tooth movement was initiated 2 to 4 weeks after the grafting and continued for 9 to 15 weeks. Sectional archwires with open-coil springs were used for distal movement of the upper first incisors into the extraction sites. Oxytetracycline and calcein were employed as bone markers. Sections of grafted areas including the teeth were prepared for light and fluorescence microscopy. The results revealed that both autogenous bone and TCPC presented similar adaptive changes to the original alveolar bone without any external stimuli. TCPC exhibited more prominent biodegradative responses to orthodontic force in association with new cementum formation. Root resorption was also less in the TCPC area than in the PMCB region. It Is shown that TCPC is biodegradative In nature and adaptive for remodeling during orthodontic tooth movement. This finding indicates that TCPC may be a better biocompatible alternative to autogenous bone transplanted into bone defects subjected to orthodontic tooth movement.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


2018 ◽  
Vol 7 (2) ◽  
pp. 47-51
Author(s):  
Neeta Aryal ◽  
Mao Jing

Introduction: Root resorption is the loss of apical root tissue leading to the shortness of root which is often evident in orthodontic tooth movement. Proper management during orthodontic treatment however can minimize this undesirable outcome. The present article attempts to review the etiology of root resorption, methods of diagnosis, and strategies for prevention.Materials & Method: A scoping review was done with the purpose to carry out the narrative integration of the relevant evidences on root resorption and orthodontic treatment from the published literatures. The resulting papers were studied and reviewed thoroughly for the key explanation of root resorption in orthodontic patients. A total of 41 published research articles were reviewed.Discussion: According to the literatures root resorption is common iatrogenic outcome in orthodontic treatment. Biological, mechanical, and combined biological and mechanical factors result in external root resorption. Though most clinicians diagnose root resorption by conventional radiography, researches have clearly shown that CBCT is the promising tool. The clinicians need to counsel orthodontic patients and their parents that the root resorption might be a potential consequence of the treatment lasting for long time. In case of severity; it is essential to reassess the patient and minimize the underlying cause. It is necessary to understand the role of orthodontist in preventing root resorption


2007 ◽  
Vol 86 (11) ◽  
pp. 1089-1094 ◽  
Author(s):  
I. Andrade ◽  
T.A. Silva ◽  
G.A.B. Silva ◽  
A.L. Teixeira ◽  
M.M. Teixeira

Orthodontic tooth movement is dependent on osteoclast activity. Tumor necrosis factor (TNF)-α plays an important role, directly or via chemokine release, in osteoclast recruitment and activation. This study aimed to investigate whether the TNF receptor type 1 (p55) influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and p55-deficient mice (p55−/−). Levels of TNF-α and 2 chemokines (MCP-1/CCL2, RANTES/CCL5) were evaluated in periodontal tissues. A significant increase in CCL2 and TNF-α was observed in both groups after 12 hrs of mechanical loading. However, CCL5 levels remained unchanged in p55−/− mice at this time-point. The number of TRAP-positive osteoclasts in p55−/− mice was significantly lower than that in WT mice. Also, there was a significantly smaller rate of tooth movement in p55−/− mice. Analysis of our data suggests that the TNFR-1 plays a significant role in orthodontic tooth movement that might be associated with changes in CCL5 levels.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
L. Feller ◽  
R. A. G. Khammissa ◽  
I. Schechter ◽  
G. Thomadakis ◽  
J. Fourie ◽  
...  

Orthodontic force-induced stresses cause dynamic alterations within the extracellular matrix and within the cytoskeleton of cells in the periodontal ligament and alveolar bone, mediating bone remodelling, ultimately enabling orthodontic tooth movement. In the periodontal ligament and alveolar bone, the mechanically induced tensile strains upregulate the expression of osteogenic genes resulting in bone formation, while mechanically induced compressive strains mediate predominantly catabolic tissue changes and bone resorption. In this review article we summarize some of the currently known biological events occurring in the periodontal ligament and in the alveolar bone in response to application of orthodontic forces and how these facilitate tooth movement.


Author(s):  
Daniela Gomides SAMARTINI ◽  
Manuela Ortega Marques RODRIGUES ◽  
Carina de Sousa SANTOS

ABSTRACT With improvements in dental aesthetic requirements an increasing number of adults are seeking orthodontic treatment that, along with current lifestyle and eating habits of the adult population, makes orthodontists more likely to encounter patients with metabolic disorders such as diabetes mellitus. Speculated that the diabetic patient during orthodontic treatment may not experience a physiological healing process as a healthy patient. Therefore, the objective of this work is to present a current and contextualized review of the mechanisms by which uncontrolled diabetes mellitus impacts on bone remodeling and orthodontic tooth movement during the application of orthodontic forces. The following databases were searched MEDLINE (via PubMed), Scopus, Web of Science, SciELO, LILACS and open grey with these MeSH “bone remodeling”, “diabetes mellitus”, “orthodontic” and “tooth movement”. Five articles remained after search strategy and were analyzed. In sum, no clinical studies were found, the evidence was limited to animal studies (rats). The results suggest that there are differences in bone remodeling and tooth movement during the application of orthodontic forces in animals with diabetes mellitus when compared to healthy animals, especially when the disease is associated with periodontal disease. However, the results are still controversial and may be due to different study protocols.


Sign in / Sign up

Export Citation Format

Share Document