scholarly journals Assessment of Risk Factor for Cardiovascular Disease Using Heart Rate Variability in Postmenopausal Women: A Comparative Study between Urban and Rural Indian Women

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nikhil Narayanaswamy ◽  
Shailaja Moodithaya ◽  
Harsha Halahalli ◽  
Amrit M. Mirajkar

Cardiovascular diseases are important causes of morbidity and mortality in postmenopausal women. A major determinant of cardiovascular health is the status of autonomic nervous system and assessment of Heart Rate Variability (HRV). Heart Rate Variability is a noninvasive and sensitive technique to evaluate cardiovascular autonomic control. Reduced HRV is an independent risk factor for the development of heart disease. This study evaluated the risk factors for cardiovascular diseases using HRV, between urban and rural Indian postmenopausal women ranging in age from 40 to 75 years. Findings of the analysis of HRV have showed that the total power which reflects overall modulation of cardiac autonomic activity (759±100  versus 444±65), the absolute power of high frequency which is surrogate of cardiovagal activity (247±41  versus 163±45), and low frequency that reflects cardiac sympathetic activity (205±26  versus 127±18) were significantly higher in urban women than that of their rural counterparts. Further, among the anthropometric measures, waist circumference was significantly correlated with indices of HRV. The study concludes that rural Indian women are associated with an additional risk beyond that of ageing and postmenopausal status when compared to the urban women. The higher central obesity could be the contributing factor for developing higher risk for cardiovascular disease among the rural women.

Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Amanda C Costa ◽  
Ana Gabriela C Silva ◽  
Cibele T Ribeiro ◽  
Guilherme A Fregonezi ◽  
Fernando A Dias

Background: Stress is one of the risk factors for cardiovascular disease and decreased heart rate variability is associated to increased mortality in some cardiac diseases. The aim of the study was to assess the impact of perceived stress on cardiac autonomic regulation in young healthy volunteers. Methods: 35 young healthy volunteers (19 to 29 years old, 6 men) from a Brazilian population were assessed for perceived stress by the translated and validated Perceived Stress Scale (PSS, 14 questions) and had the R-R intervals recorded at rest on supine position (POLAR RS800CX) and analyzed (5 minutes, Kubius HRV software) by Fast-Fourier Transform for quantification of Heart Rate Variability (HRV). Results: Average data (±SD) for age, heart rate, BMI, waist circumference and percentage of body fat (%BF) were: 21.3±2.7 years; 65.5±7.9 bpm; 22.3±1.9 Kg/m 2 ; 76.0±6.1 cm and 32.1±6.6%; respectively. The mean score for the PSS-14 was 23.5±7.2 and for the HRV parameter as follow: SSDN=54.8±21.2ms; rMSSD=55.9±32.2ms; low-frequency (LF)= 794.8±579.7ms 2 ; High-frequency (HF)= 1508.0±1783.0 ms 2 ; LF(n.u.)= 41.1±16.2; HF(n.u.)= 58.9±16.2; LF/HF=0.89±0.80 and Total power (TP)= 3151±2570ms 2 . Spearman nonparametric correlation was calculated and there was a significant correlation of PSS-14 scores and LF (ms 2 ) (r=−0.343; p= 0.044). Other HRV variables did not shown significant correlation but also had negative values for Spearman r (TP r=−0.265, p=0.124; HF r=−0.158; SSDN r=−0.207; rMSSD r=−0.243, p=0.160). LF/HF and LF(n.u.) did not correlate to PSS-14 having Spearman r very close to zero (LF/HF r=−0.007, p=0.969; LF(n.u.) r=−0.005, p=0.976). No correlation was found for HRV parameters and BMI and there was a trend for statistical correlation of %BF and LF (ms 2 ) (r=−0.309, p=0.071). Conclusions: These data demonstrate a possible association of perceived stress level and HRV at rest. Changes in LF can be a consequence of both sympathetic and parasympathetic activity, however, analyzing the other variables HF, TP, SSDN and rMSSD (all negative Spearman r) and due to the lack of changes in LF/HF ratio and LF(n.u.) we interpret that increased stress may be associated to decrease in overall heart rate variability. These changes were seen in healthy individuals and may point out an important mechanism in cardiovascular disease development.


1996 ◽  
Vol 271 (2) ◽  
pp. H455-H460 ◽  
Author(s):  
K. P. Davy ◽  
N. L. Miniclier ◽  
J. A. Taylor ◽  
E. T. Stevenson ◽  
D. R. Seals

Coronary heart disease (CHD) and cardiac sudden death (CSD) incidence accelerates after menopause, but the incidence is lower in physically active versus less active women. Low heart rate variability (HRV) is a risk factor for CHD and CSD. The purpose of the present investigation was to test the hypothesis that HRV at rest is greater in physically active compared with less active postmenopausal women. If true, we further hypothesized that the greater HRV in the physically active women would be closely associated with an elevated spontaneous cardiac baroreflex sensitivity (SBRS). HRV (both time and frequency domain measures) and SBRS (sequence method) were measured during 5-min periods of controlled frequency breathing (15 breaths/min) in the supine, sitting, and standing postures in 9 physically active postmenopausal women (age = 53 +/- 1 yr) and 11 age-matched controls (age = 56 +/- 2 yr). Body weight, body mass index, and body fat percentage were lower (P < 0.01) and maximal oxygen uptake was higher (P < 0.01) in the physically active group. The standard deviation of the R-R intervals (time domain measure) was higher in all postures in the active women (P < 0.05) as were the high-frequency, low-frequency, and total power of HRV. SBRS also was higher (P < 0.05) in the physically active women in all postures and accounted for approximately 70% of the variance in the high-frequency power of HRV (P < 0.05). The results of the present investigation indicate that physically active postmenopausal women demonstrate higher levels of HRV compared with age-matched, less active women. Furthermore, SBRS accounted for the majority of the variance in the high-frequency power of HRV, suggesting the possibility of a mechanistic link with cardiac vagal modulation of heart rate. Our findings may provide insight into a possible cardioprotective mechanism in physically active postmenopausal women.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5285
Author(s):  
Branko Babusiak ◽  
Adrian Hajducik ◽  
Stefan Medvecky ◽  
Michal Lukac ◽  
Jaromir Klarak

This article describes the design of a smart steering wheel intended for use in unobtrusive health and drowsiness monitoring. The aging population, cardiovascular disease, personalized medicine, and driver fatigue were significant motivations for developing a monitoring platform in cars because people spent much time in cars. The purpose was to create a unique, comprehensive monitoring system for the driver. The crucial parameters in health or drowsiness monitoring, such as heart rate, heart rate variability, and blood oxygenation, are measured by an electrocardiograph and oximeter integrated into the steering wheel. In addition, an inertial unit was integrated into the steering wheel to record and analyze the movement patterns performed by the driver while driving. The developed steering wheel was tested under laboratory and real-life conditions. The measured signals were verified by commercial devices to confirm data correctness and accuracy. The resulting signals show the applicability of the developed platform in further detecting specific cardiovascular diseases (especially atrial fibrillation) and drowsiness.


2020 ◽  
pp. 71-76
Author(s):  
P. S. Lapanov

Objective: to identify clinically significant functional interactions between the autonomic nervous system and personal emotional sphere.Material and methods. 105 patients with cardiovascular diseases were examined. Using a clinical role-playing game, the states of the psycho-emotional arousal of modalities: «anger», «fear», «sadness», and «joy» with some intervals of relaxation between them were successively induced in the patients, and the intensity of the psycho-emotional arousal was also recorded. At the same time, the parameters of heart rate variability were registered using the KP-01 Holter monitoring system. The patients were divided into two groups depending on the presence of a high direct relationship between the recorded indicators.Results. It has been found that a high direct relationship (rs[9] = 0.70, p = 0.018) of the power spectral density in the low frequency range, the total index of autonomic disequilibrium, and the intensity of emotional responses is associated with a 3-4 risk of arterial hypertension, coronary heart disease , cardiosclerosis, chronic heart failure.Conclusion. The presence of these correlations is associated with cardiovascular disease and is an independent risk factor for its development.


2003 ◽  
Vol 104 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Mario VAZ ◽  
A.V. BHARATHI ◽  
S. SUCHARITA ◽  
D. NAZARETH

Alterations in autonomic nerve activity in subjects in a chronically undernourished state have been proposed, but have been inadequately documented. The present study evaluated heart rate and systolic blood pressure variability in the frequency domain in two underweight groups, one of which was undernourished and recruited from the lower socio-economic strata [underweight, undernourished (UW/UN); n = 15], while the other was from a high class of socio-economic background [underweight, well nourished (UW/WN); n = 17], as well as in normal-weight controls [normal weight, well nourished (NW/WN); n = 27]. Baroreflex sensitivity, which is a determinant of heart rate variability, was also assessed. The data indicate that total power (0–0.4Hz), low-frequency power (0.04–0.15Hz) and high-frequency power (0.15–0.4Hz) of RR interval variability were significantly lower in the UW/UN subjects (P<0.05) than in the NW/WN controls when expressed in absolute units, but not when the low- and high-frequency components were normalized for total power. Baroreflex sensitivity was similarly lower in the UW/UN group (P<0.05). Heart rate variability parameters in the UW/WN group were generally between those of the UW/UN and NW/WN groups, but were not statistically different from either. The mechanisms that contribute to the observed differences between undernourished and normal-weight groups, and the implications of these differences, remain to be elucidated.


2012 ◽  
Vol 20 (4) ◽  
pp. 671-677 ◽  
Author(s):  
Mette Rauhe Mouridsen ◽  
Nathalie Tommerup Bendsen ◽  
Arne Astrup ◽  
Steen Bendix Haugaard ◽  
Zeynep Binici ◽  
...  

2005 ◽  
Vol 289 (4) ◽  
pp. H1729-H1735 ◽  
Author(s):  
Sophie Motte ◽  
Myrielle Mathieu ◽  
Serge Brimioulle ◽  
Anne Pensis ◽  
Lynn Ray ◽  
...  

Heart failure is associated with autonomic imbalance, and this can be evaluated by a spectral analysis of heart rate variability. However, the time course of low-frequency (LF) and high-frequency (HF) heart rate variability changes, and their functional correlates during progression of the disease are not exactly known. Progressive heart failure was induced in 16 beagle dogs over a 7-wk period by rapid ventricular pacing. Spectral analysis of heart rate variability and respiration, echocardiography, hemodynamic measurements, plasma atrial natriuretic factor, and norepinephrine was obtained at baseline and every week, 30 min after pacing interruption. Progressive heart failure increased heart rate (from 91 ± 4 to 136 ± 5 beats/min; P < 0.001) and decreased absolute and normalized (percentage of total power) HF variability from week 1 and 2, respectively ( P < 0.01). Absolute LF variability did not change during the study until it disappeared in two dogs at week 7 ( P < 0.05). Normalized LF variability increased in moderate heart failure ( P < 0.01), leading to an increased LF-to-HF ratio ( P < 0.05), but decreased in severe heart failure ( P < 0.044; week 7 vs. week 5). Stepwise regression analysis revealed that among heart rate variables, absolute HF variability was closely associated with wedge pressure, right atrial and pulmonary arterial pressure, left ventricular ejection fraction and volume, ratio of maximal velocity of early (E) and atrial (A) mitral flow waves, left atrial diameter, plasma norepinephrine, and atrial natriuretic peptide (0.45 < r < 0.65, all P < 0.001). In tachycardia-induced heart failure, absolute HF heart rate variability is a more reliable indicator of cardiac dysfunction and neurohumoral activation than LF heart rate variability.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


Sign in / Sign up

Export Citation Format

Share Document