scholarly journals Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guoshun Wang ◽  
Rong Fu

Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the position of the friction block of the brake pad. Structure optimization was conducted on brake pads composed of 5 or 7 circular friction blocks. The result shows that, with the same overall contact area of friction pair, an appropriate brake pad structure can make the friction energy distribute evenly and therefore lowers peak temperature and stress of the brake disc. Compared with a brake pad of 7 friction blocks, an optimized brake pad of 5 friction blocks lowered the peak temperature of the corresponding brake disc by 4.9% and reduced the highest stress by 10.7%.

2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Hussain, S. ◽  
M.K Abdul Hamid ◽  
A.R Mat Lazim ◽  
A.R. Abu Bakar

Brake wear particles resulting from friction between the brake pad and disc are common in brake system. In this work brake wear particles were analyzed based on the size and shape to investigate the effects of speed and load applied to the generation of brake wear particles. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) was used to identify the size, shape and element compositions of these particles. Two types of brake pads were studied which are non-asbestos organic and semi metallic brake pads. Results showed that the size and shape of the particles generatedvary significantly depending on the applied brake load, and less significantly on brake disc speed. The wear particle becomes bigger with increasing applied brake pressure. The wear particle size varies from 300 nm to 600 µm, and contained elements such as carbon, oxygen, magnesium, aluminum, sulfur and iron.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


Author(s):  
P. Ashwath ◽  
M. Anthony Xavior ◽  
R. Rajendran

Abstract Looking at the background of the recent research on the area of the brake friction materials, composites are gaining the trust in being a potential replacement among the automobile sectors. The fabrication of the AA 2024 composites reinforced with 3 wt % Al2O3 is done using powder metallurgy technique followed by hot extrusion process. Current research work focuses on friction stir processed surface modified composites evaluated for the replacement of the currently used brake pads materials in automobile sectors. Surface characterization is carried out on the worn-out tracks of both brake materials developed and the counterpart employed using scanning electron microscope and XRD. The counterpart used in pin on disc configuration is exactly the material used in the automobile application (i.e. automobile brake disc plate material). Impact characteristics and tensile studies after friction stir processing (FSP) is studied as well. Coefficient of friction and wear loss characteristics in aspect of the tribological life of the composites developed is compared with the existing automobile brake pad components and found that FSP on composites served the purpose of the materials used in existing brake pads material.


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 113-119
Author(s):  
Waldemar TUSZYŃSKI ◽  
Michał GIBAŁA ◽  
Andrzej GOSPODARCZYK ◽  
Stanisław KOZIOŁ ◽  
Krzysztof MATECKI ◽  
...  

For the sake of driving safety, the right choice of the brake pad friction material and its manufacturing processes to obtain the appropriate tribological properties is a matter of priority for brake pad manufacturers. Determination of the tribological properties is best done in component tests, i.e. in the setup: brake pads – brake disc. At the request of one of the domestic brake pad manufacturers, as part of the POIR project, an inertia dynamometer for testing friction and wear of brake pads and brake discs was developed and manufactured, which was given the symbol T-33. A test methodology was developed based on the “Cold application section” procedure described in SAE J2522:2003. The T-33 inertia dynamometer is designed for testing brake pads and brake discs intended for five vehicles representing the passenger vehicle class and vans. The paper presents the new test stand, test methodology, and results of verification tests of the T-33 dynamometer (interlaboratory comparison tests) performed on the Cinquecento vehicle brake setup.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 107 ◽  
Author(s):  
Alessandro Lazzari ◽  
Davide Tonazzi ◽  
Giovanni Conidi ◽  
Cristian Malmassari ◽  
Andrea Cerutti ◽  
...  

Frictional and dynamic responses of brake pad materials, when sliding on brake disc counterfaces, are at the origin of noise, vibration and harshness (NVH) issues such as brake noise emissions. In more detail, groan is a low frequency noise emission often associated to the stick-slip frictional response of the brake system. The instability of such contact is the result of the coupling between the system dynamics and the frictional response of the materials in contact. In this work, an experimental approach is proposed for measuring the frictional response and the propensity to generate stick-slip of different lining materials, coming from commercial brake pads, when sliding on a worn surface of a brake disc, under the same controlled boundary conditions. The proposed methodology allowed for comparing the propensity of the tested pad materials to stick-slip vibrations, which is in agreement with feedback from automotive industry on groan emission.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 100
Author(s):  
Ioan Feier ◽  
Joseph Way ◽  
Rob Redfield

High-power bicycle disc braking can create excessive temperatures and boiling brake fluid, resulting in performance degradation and damage. The goal of this work is to understand brake friction performance and thermal behavior for bicycle disc brakes. A previously described disc braking dynamometer is used to assess brake pad performance of sintered metallic brake pads, organic brake pads, and ‘power’ organic pads in up to 400 W of braking power. The friction coefficient is found to be dependent on both temperature and normal force. Friction curve fits are provided for temperatures between 300 K and 550 K. Organic and ‘power’ organic pads are found to have similar behavior, and have higher friction coefficients compared to metallic pads. Further, brakes on an instrumented bicycle are tested in outdoor field trials during downhill descent. A MATLAB thermal model successfully predicts the downhill field brake disc temperatures when using the friction data curve fits.


2020 ◽  
Vol 27 (1) ◽  
pp. 374-396
Author(s):  
Andrzej Borawski

AbstractBrakes are one of the most important components of vehicle. The brake system must be reliable and display unchanging action throughout its use, as it guards the health and life of many people. Properly matched friction pair, a disc and brake pad (in disc brakes), have a great impact on these factors. In most cases, the disc is made of grey cast iron. The brake pads are far more complex components. New technologies make it possible to develop materials with various compositions and different proportions, and connect them permanently in fully controllable processes. This elaboration shows that all these factors have a greater or lesser impact on the coefficient of friction, resistance to friction wear and high temperature, and brake pad’s operating life. This review collects the most important, the most interesting, and the most unconventional materials used in production of brake pads, and characterizes their impact on the tribological properties of pads.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1220 ◽  
Author(s):  
Vlastimil Matějka ◽  
Guido Perricone ◽  
Jozef Vlček ◽  
Ulf Olofsson ◽  
Jens Wahlström

The aim of the present paper is to investigate the level of airborne wear particles released during the dyno-bench tests with the brake pads consisting of alkali-activated slag as an abrasive. Airborne wear particles are generated with a full-scale dyno-bench adapted for airborne wear particles emission studies. The tested disc brake is equipped with two semi-metallic brake pads and a grey cast iron brake disc. A reduced Los Angeles City Traffic (LACT) driving cycle, developed within the LOWBRASYS project (European Union’s Horizon 2020 research and innovation programme), is used to mimic city driving. The same friction pair is used six times with reduced LACT cycle. The weight loss and thickness of the pads and disc are registered after each test cycle ends. The amount of the airborne wear particles emissions released during each test cycle are characterized using a PM10 impactor and electric low-pressure impactor. The obtained data of wear particle emissions are correlated with the parameters of the brake stops. The maximum disc temperature was indicated as the parameter having the largest influence on the production of particle emissions together with the duration of the brake event


Author(s):  
F Bergman ◽  
M Eriksson ◽  
S Jacobson

Three sets of brake pads were subjected to a series of squeal tests. The pad area in contact with the brake disc was successively reduced down to 50 per cent of the original by removal of friction material either at the leading and trailing edges, at the outer and inner edges or spotwise removal of interior area by drilling. The pad surface geometry strongly affected the occurrence of brake squeals, with a significant reduction for all three pads with 50 per cent contact area. However, the average squeal noise level seems to be controlled by the pad contact length in the sliding direction.


Sign in / Sign up

Export Citation Format

Share Document