scholarly journals Metabolism, Physiological Role, and Clinical Implications of Sphingolipids in Gastrointestinal Tract

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Krzysztof Kurek ◽  
Bartłomiej Łukaszuk ◽  
Dominika M. Piotrowska ◽  
Patrycja Wiesiołek ◽  
Anna Małgorzata Chabowska ◽  
...  

Sphingolipids in digestive system are responsible for numerous important physiological and pathological processes. In the membrane of gut epithelial cells, sphingolipids provide structural integrity, regulate absorption of some nutrients, and act as receptors for many microbial antigens and their toxins. Moreover, bioactive sphingolipids such as ceramide or sphingosine-1-phosphate regulate cellular growth, differentiation, and programmed cell death—apoptosis. Although it is well established that sphingolipids have clinical implications in gastrointestinal tumorigenesis or inflammation, further studies are needed to fully explore the role of sphingolipids in neoplastic and inflammatory diseases in gastrointestinal tract. Pharmacological agents which regulate metabolism of sphingolipids can be potentially used in the management of colorectal cancer or inflammatory bowel diseases. The aim of this work is to critically the review physiological and pathological roles of sphingolipids in the gastrointestinal tract.

2021 ◽  
Vol 9 (4) ◽  
pp. 697
Author(s):  
Valerio Baldelli ◽  
Franco Scaldaferri ◽  
Lorenza Putignani ◽  
Federica Del Chierico

Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.


1989 ◽  
Vol 30 (6) ◽  
pp. 633-637 ◽  
Author(s):  
M. Vorne ◽  
T. Lantto ◽  
S. Paakkinen ◽  
S. Salo ◽  
I. Soini

Forty-five patients with various inflammatory diseases were imaged with 99Tcm-HMPAO labelled leucocytes and 99Tcm-nanocolloid within 7 days. The overall sensitivity of 99Tcm-leucocytes was 97% and that of 99Tcm-nanocolloid 59% and both agents had a 100% specificity. The 99Tcm-leucocyte method showed reliable results in various inflammatory and infectious conditions, and seems suitable as a primary imaging method. On the contrary, 99Tcm-nanocolloid cannot be recommended for use in inflammatory bowel diseases, soft tissue abscesses or prosthetic vascular graft infections. However, 99Tcm-nanocolloid gave reliable information in inflammatory and infectious bone and joint diseases in which it had a 90% sensitivity and 100% specificity. In those lesions the 99Tcm-nanocolloid method may be useful, because it is simple, fast and cheap. Yet, further evaluation is needed.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


2021 ◽  
pp. postgradmedj-2020-139227
Author(s):  
Şengül Beyaz ◽  
Erdem Akbal

BackgroundAdipokines are adipose tissue–derived secreted molecules that can exert anti-inflammatory or proinflammatory activities. Altered expression of adipokines has been described in various inflammatory diseases, including inflammatory bowel diseases (IBDs) such as Crohn’s disease (CD) and ulcerative colitis (UC). Little is known about nesfatin-1, a recently identified adipokine, in IBD. The aim of this study was to investigate serum nesfatin-1 levels in patients with IBD.MethodsThis study included a total of 52 adult individuals (17 patients with CD, 18 patients with UC and 17 healthy volunteers) with similar age and body mass index. Serum nesfatin-1 levels were measured by ELISA in healthy individuals and patients with IBD in their active and remission periods. Blood inflammation markers including C reactive protein (CRP), erythrocyte sedimentation (ESR) and white cell count (WCC) were also measured in patients.ResultsWe found significantly elevated levels of serum nesfatin-1 in the active disease period in both patients with CD (p=0.00003) and patients with UC (p=0.00001), compared with healthy individuals. Serum nesfatin-1 levels moderately decreased in the remission period; however, they were still significantly higher than that of healthy individuals. Receiver operating characteristic curve analyses indicated serum nesfatin-1 with an excellent diagnostic value for IBD. Finally, patients had significantly high CRP, ESR and WCC in the active IBD; however, we found the nesfatin-1 strongly correlated only with ESR in the active CD.ConclusionThis is the first study investigating the circulating levels of nesfatin-1 in patients with IBD. Serum nesfatin-1 may serve as an additional inflammatory marker for diagnosis of IBD in affected individuals.


2019 ◽  
Vol 26 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Fernando Magro ◽  
Rosa Coelho ◽  
Armando Peixoto

Immune-mediated inflammatory diseases share several pathogenic pathways and this pushes sometimes to extrapolate from one disease or indication to others. A biosimilar can be defined as a biotherapeutic product which is similar in terms of quality, safety, and efficacy to an already licensed reference biotherapeutic product. We review the substrate for extrapolation, the current approval process for biosimilars and the pioneering studies on biosimilars performed in rheumatoid arthritis patients. A biosimilar has the same amino acid sequence as its innovator product. However, post-translational modifications can occur and the current analytical techniques do not allow the final structure. To test the efficacy in one indication, a homogeneous population should be chosen and immunogenicity features are essential in switching and interchangeability. CT-P13 (Remsima™; Inflectra™) is a biosimilar of reference infliximab (Remicade®). It meets most of the requirements for extrapolation. Nevertheless, in inflammatory bowel diseases (IBD) we need more studies to confirm the postulates of extrapolation from rheumatoid arthritis and ankylosing spondylitis to IBD. Furthermore, an effective pharmacovigilance schedule is mandatory to look for immunogenicity and side effects.


2020 ◽  
Vol 15 (3) ◽  
pp. 174-182 ◽  
Author(s):  
Marianna Roselli ◽  
Alberto Finamore

Inflammatory bowel diseases, namely Crohn's disease and ulcerative colitis, are currently considered multifactorial pathologies in which various combined environmental factors act on genetic background, giving rise to chronic inflammation of the gastrointestinal tract. Ulcerative colitis is an inflammation of the colon caused by a dysregulated immune response to host intestinal microbiota in genetically susceptible subjects. Ulcerative colitis has a strong impact on patients' quality of life, as well as high costs for the health-care system. A great interest on the role of intestinal microbiota modulation in ulcerative colitis is emerging. Several studies have shown an improvement of inflammatory markers and symptoms in ulcerative colitis patients through treatments with probiotics and prebiotics separately. Despite the low number of studies on the treatment of ulcerative colitis by specific strains of probiotics plus selected prebiotics, i.e. synbiotics, the results are promising, even if discordant. The mechanism of action in synbiotics supplementation is still unclear and needs more investigation, although there is a large number of data indicating that the synergism between probiotics and prebiotics favours the survival and implantation of probiotics into the gastrointestinal tract with beneficial effects on human health by modulating the inflammatory response and gut microbiota composition. The aim of this minireview is to describe the main in vitro, animal and human studies performed up to now, that have used synbiotics to treat ulcerative colitis, and to highlight limitations and future perspectives.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guangxi Zhou ◽  
Lin Yu ◽  
Wenjing Yang ◽  
Wei Wu ◽  
Leilei Fang ◽  
...  

Background. Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronically remittent and progressive inflammatory disorders. Phospholipase D2 (PLD2) is reported to be involved in the pathogenesis of several inflammatory diseases. However, the exact role of PLD2 in IBD is obscure.Methods. PLD2 expression was determined in peripheral blood cells and inflamed mucosa from patients with IBD by qRT-PCR. Colonic biopsies were also obtained from CD patients before and after infliximab (IFX) treatment to examine PLD2 expression. PLD2 selective inhibitor (CAY10594) was administrated daily by oral gavage in DSS-induced colitis mice. Bone marrow neutrophils from colitis mice were harvested to examine the migration using Transwell plate.Results. PLD2 was found to be significantly increased in peripheral blood cells and inflamed mucosa in patients with active IBD. Treatment with IFX could significantly decrease PLD2 expression in intestinal mucosa in patients with CD. Moreover, blockade of PLD2 with CAY10594 could markedly ameliorate DSS-induced colitis in mice and promote neutrophil migration.Conclusions. PLD2 plays a critical role in the pathogenesis of IBD. Blockade of PLD2 may serve as a new therapeutic approach for treatment of IBD.


2015 ◽  
Vol 11 (6) ◽  
pp. 699-708 ◽  
Author(s):  
Antonella Diamanti ◽  
Teresa Capriati ◽  
Bronislava Papadatou ◽  
Daniela Knafelz ◽  
Fiammetta Bracci ◽  
...  

Author(s):  
Sara Jarmakiewicz - Czaja ◽  
Dominika Piątek ◽  
Rafał Filip

Various types of food additives are widely used in the food industry. Due to their properties extending the usefulness for consuming food products, they give them different colours, consistency, or taste. The products are marked ‘E’ and the code is assigned to the subscription used. Many of the supplements affect human health negatively. Emulsifiers or stabilizers can lead to epithelial loads and the development of inflammation. Sucrose and other sweeteners may change the composition of the intestinal microflora and thus lead to intestinal blockage. Some additives classified as preservatives are available and may predispose to intestinal dysbiosis. Available substances belonging to food dyes may predispose to genotoxic and cytotoxic effects and cause inflammation in the intestines. Substances added to food can also cause disorders of intestinal homeostasis.


Sign in / Sign up

Export Citation Format

Share Document