scholarly journals Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi

Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF) filled high density polyethylene (HDPE) have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.

2015 ◽  
Vol 754-755 ◽  
pp. 201-204
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Azlinda Abdul Ghani ◽  
Hanafi Ismail ◽  
Awiezan Mislan

The compatibilizer effect of ENR-50 on the tensile properties of high density polyethylene (HDPE)/recycled acrylonitrile butadiene rubber (NBRr)/banana skin powder (BSP)/ composites has been studies. HDPE/NBRr/BSP composites were prepared by melt mixing technique using twin-screw at 180 °C for 9 minutes at rotor speed 50 rpm. The six different composites studied were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. As for compatibilized composite a fix 5 wt% of ENR-50 was evaluated. The specimens were analysed for tensile strength and elongation at break (Eb). The results showed that tensile strength and the elongation at break were decreases with the increasing of NBRr loading. However for ENR-50 compatibilized composites, higher tensile strength and elongation at break was recorded. The ENR-50 was found to be an excellent compatibilizer for HDPE/NBRr/BSP composites.


2009 ◽  
Vol 113 (4) ◽  
pp. 2081-2089 ◽  
Author(s):  
Jingjing Zhang ◽  
Chul B. Park ◽  
Ghaus M. Rizvi ◽  
Hanxiong Huang ◽  
Qingping Guo

2014 ◽  
Vol 87 (1) ◽  
pp. 86-102 ◽  
Author(s):  
Avraam I. Isayev ◽  
Tian Liang ◽  
Todd M. Lewis

ABSTRACT Ultrasonic devulcanization of tire rubber particles of 10 and 30 meshes by means of a new ultrasonic twin-screw extruder was investigated. The ultrasonic amplitude and devulcanization temperature were varied at a fixed frequency of 40 kHz. The die pressure and ultrasonic power consumption during devulcanization were recorded. The degree of devulcanization was investigated by measuring the cross-link density, gel fraction, and revulcanization behavior. Rubber of 30 mesh exhibited a lower die pressure and higher degree of devulcanization than that of rubber of 10 mesh. Because of the higher level of devulcanization and lower viscosity of devulcanized rubbers at higher amplitudes, the temperature of devulcanized rubbers at the die was reduced with an increase of the ultrasonic amplitude. Generally, the torque at the start of curing and maximum torque on the curing curve measured during revulcanization is higher for rubber of 10 mesh and rubbers devulcanized at a lower temperature. Rheological properties of devulcanized and revulcanized rubbers and mechanical properties of revulcanizates were measured. The complex viscosity of devulcanized and revulcanized rubbers of both meshes as a function of frequency exhibited a power-law behavior, with the power-law index being 0.06 for devulcanized rubbers and 0.02 for revulcanized rubbers. The consistency index of devulcanized and revulcanized rubbers was higher for rubber of 10 mesh; however, both rubbers showed a higher consistency index at a lower temperature. Cole–Cole plots, cross-link density, and gel fraction of devulcanized and revulcanized rubbers, revulcanization behavior, and modulus of revulcanizates separated in two distinct groups based on the level of devulcanization and effect on molecular structure of devulcanized rubber. Revulcanizates with a greater degree of devulcanization exhibited a higher elongation at break, whereas those with a lower degree of devulcanization exhibited higher strength and modulus. Revulcanizates of rubber of 30 mesh exhibited a consistently higher elongation at break. The normalized gel fraction versus normalized cross-link density was described by a unique function independent of the processing conditions and rubber particle size.


2021 ◽  
pp. 096739112110118
Author(s):  
Vishwa Pratap Singh ◽  
Ravi Kumar ◽  
Ashwith ◽  
Priyanka Singh ◽  
Satyajit Samanta ◽  
...  

The present study explains the preparation of high-density polyethylene (HDPE)-based nanocomposites containing different amounts of montmorillonite (MMT) nanoclay (1–10 wt%). These nanocomposites were obtained by melt blending in a co-rotating twin screw extruder in absence and presence of a compatibiliser (HDPE-g-MA). The melt rheological behaviour of HDPE/MMT nanocomposites has been investigated by using capillary rheometer at 190°C, 200°C and 210°C over the shear rate range of 50–1000 s−1. The melt viscosity of HDPE increased marginally at 10 wt% filler loading while addition of compatibiliser to HDPE/MMT composites did not show any significant effect on viscosity. All nanocomposites showed shear thinning and non-Newtonian flow behaviour. The power law index reduced with increase in MMT concentration and increased with increase in temperature while opposite trend was observed for the consistency index. The activation energy was highest for the nanocomposites containing 10 wt% MMT and decreased upon addition of coupling agent.


2010 ◽  
Vol 658 ◽  
pp. 475-478 ◽  
Author(s):  
Gui Wen Yu ◽  
Ying Cheng Hu ◽  
Ji You Gu

Three different nondestructive testing (NDT) methods were used on the wood-plastic composites (WPC), which were made of either recycled or virgin high-density polyethylene (HDPE) with poplar fibers as filler. The values of dynamic Young’s modulus of WPC based on recycled or virgin HDPE were measured by the different NDT methods, and the values of static bending modulus of elasticity (MOE) were also determined by three point bending test according to ASTM D790-03. The paper analyzed the variability of the dynamic young’s modulus of WPC based on recycled or virgin HDPE obtained with different NDT methods, and the correlativity was also estimated between the dynamic Young’s modulus and the static MOE of WPC based on recycled HDPE. These results suggest that WPC can be made of recycled HDPE, and the NDT methods can be appropriate to estimate the dynamic Young’s modulus of WPC based on recycled HDPE.


2020 ◽  
pp. 204124792096850
Author(s):  
N Goudarzian ◽  
M Esmaeli ◽  
SM Mousavi ◽  
SA Hashemi ◽  
M Zarei ◽  
...  

In this paper, the mechanical and morphological properties of biodegradable SAN/EOC/Nanoclay/Proteins nanocomposite were investigated. The composites were first prepared by a laboratory-scale twin screw extruder. Morphology of the blend was determined by SEM images. Mechanical properties in terms of tensile tests were carried out by Testometric TS2000, stress at break, strain at break, and Young’s modulus was determined. Based on mechanical results, although the young’s modulus increases with increasing protein content but the strain at break of the composite decreases acutely because of the presence of protein. The blend indicated an improvement in mechanical and thermal properties. Today, according to the vast application of plastic in different fields, environmental issues were affected by these kinds of non-degradable materials, so that biodegradability of the plastics is just the remaining route to solve. In this research, biodegradable blends were prepared using whey protein as a biodegradable natural polymer. The results of the biological procedure-test after 3 months indicated sufficient weight loss and biodegradation of these blends.


2008 ◽  
Vol 587-588 ◽  
pp. 520-524 ◽  
Author(s):  
Isabel Moura ◽  
Ana Vera Machado ◽  
Fernando M. Duarte ◽  
Gabriela Botelho ◽  
Regina Nogueira

This work aimed to prepare biodegradable polymeric materials based on blends of a synthetic high density polyethylene (HDPE) and biodegradable polymers such as polylactic acid (PCL) and poly(caprolactone) (PLA), in a co-rotating twin-screw extruder. A polyethylene modified with maleic anhydride was used as compatibiliser. The mechanical results showed that the addition of PLA improves the blends stiffness while the addition of PCL leads to materials with a greater elongation at break and a lower Young modulus. This feature is related with the mechanical properties of each material as well as the adhesion between them. Concerning the biodegradability tests, it was found that HDPE/PCL blend presents the highest degree of biodegradability.


Sign in / Sign up

Export Citation Format

Share Document