scholarly journals Preparation of Biodegradable Materials by Reactive Extrusion

2008 ◽  
Vol 587-588 ◽  
pp. 520-524 ◽  
Author(s):  
Isabel Moura ◽  
Ana Vera Machado ◽  
Fernando M. Duarte ◽  
Gabriela Botelho ◽  
Regina Nogueira

This work aimed to prepare biodegradable polymeric materials based on blends of a synthetic high density polyethylene (HDPE) and biodegradable polymers such as polylactic acid (PCL) and poly(caprolactone) (PLA), in a co-rotating twin-screw extruder. A polyethylene modified with maleic anhydride was used as compatibiliser. The mechanical results showed that the addition of PLA improves the blends stiffness while the addition of PCL leads to materials with a greater elongation at break and a lower Young modulus. This feature is related with the mechanical properties of each material as well as the adhesion between them. Concerning the biodegradability tests, it was found that HDPE/PCL blend presents the highest degree of biodegradability.

2019 ◽  
Vol 131 ◽  
pp. 01127
Author(s):  
Wen Wen Yu ◽  
Jian Gao Shi ◽  
Yong Li Liu ◽  
Lei Wang

Ultra-high molecular weight polyethylene (UHMWPE) and graphene (GR) was melt compounded by reactive extrusion. Nanocomposite monofilaments were prepared by melt spinning through a co-rotating screw extruder and drawing at hot water. GR/UHMWPE nanocomposite ropes were twisted using nanocomposite monofilaments. A structure and mechanical properties of the GR/UHMWPE nanocomposite monofilaments and its ropes had been characterized by scanning electron microscopy (SEM), and mechanical test. Results showed that the monofilaments surface of monofilaments became rougher with introducing of GR nanosheets, which could be related to stacking of GR. The breaking load of GR/UHMWPE nanocomposite ropes was remarkably improved upon nanofiller addition, with the decrease of the elongation at break.


2015 ◽  
Vol 735 ◽  
pp. 70-74
Author(s):  
Ibrahim Mohammed Inuwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

This work investigates the effect of compatibilizer concentration on the mechanical properties of compatibilized polyethylene terephthalate (PET) /polypropylene (PP) blends. A blend containing 70 % (wt) PET, 30 % (wt) PP and 5 - 15 phr compatibilizers were compounded using counter rotating twin screw extruder and fabricated into standard test samples using injection molding. The compatibilizer used is styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (SEBS-g-MAH). Morphological studies show that the particle size of the dispersed PP phase is dependent on the compatibilizer content up to 10 phr. Impact strength and elongation at break showed maximum values with the addition of 10 phr SEBS-g-MAH and a corresponding decrease in flexural and young’s moduli; and strengths.. Overall the mechanical properties of PET/PP blends depend on the control of the morphology of the blend and can be achieved by effective compatibilization using 10 phr SEBS-g-MAH.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi

Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF) filled high density polyethylene (HDPE) have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.


2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2014 ◽  
Vol 1025-1026 ◽  
pp. 221-226 ◽  
Author(s):  
Supavinee Sareeladdanon ◽  
Pranut Potiyaraj

Nanocomposite is one of the most favorable approaches to improve mechanical properties of polymers. This study prepared polymer composite of PLA and LLDPE with different amount of rice husk silica (0.5 and 1 wt%). The composites were prepared by melt-mixing in a twin-screw extruder and processed into film by a chill roll cast extruder. The mechanical properties were investigated through tensile testing and tear testing. The result show that the tensile modulus of PLA decreased with 1wt% rice husk silica. Similarly, tensile modulus of LLDPE dropped with the addition of silica. However, with the addition 0.5 and 1 wt% rice husk silica, the elongation at break of PLA and LLDPE composites increases significantly.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Haroutioun Askanian ◽  
Vincent Verney ◽  
Sophie Commereuc ◽  
René Guyonnet ◽  
Valérie Massardier

Abstract Composites have been prepared with polypropylene (PP) as a matrix and pine flours, either thermally treated (Wtr) or not (W), as fillers resulting in wood plastic composites (WPCs). The treatment by retification at 280° mainly elevates the hydrophobicity of wood. The WPCs were fabricated with a co-rotating twin-screw extruder with the screw speeds of 500 and 1200 rpm and specimens were prepared by injection molding. Viscoelastic behavior, tensile test and Charpy impact test of Wtr PC were compared with PP and WPC. Wtr PC has a better dispersion and highest tensile modulus. As expected, a decrease in elongation at break and impact strength was observed for all composites. Processing at 1200 rpm improved by 60% the Young modulus of the WPC compared to 500 rpm, whereas 500 rpm was enough to obtain the highest modulus for Wtr PC.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
O. Moini Jazani ◽  
A. Arefazar ◽  
M.H. Beheshty

AbstractIn this study, nine ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/styrene-ethylene-butylene-styrene triblock copolymer (SEBS) with the same compositions (70%wt PP, 15%wt PC, 7.5%wt SEBS and 7.5%wt maleic-anhydride grafted SEBS (SEBS-g-MAH) as a compatibilizer) are prepared using twin screw extruder at different levels of die temperature (235-245- 255 °C), screw speed (70-100-130rpm) and blending sequence (M1-M2-M3) . In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin-screw extruder. In M2 procedure, PC, SEBS, and SEBS-g- MAH minor phases are first pre-blended in twin screw extruder and after granulating are added to PP continuous phase in twin screw extruder. Consequently, in M3 procedure, PP and SEBS-g-MAH are first pre-blended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taghuchi experimental design. The responding variables are impact strength and tensile properties (young modulus and yield stress) which are influenced by the morphology of ternary blend and the results are used to perform the analysis of variance (ANOVA). It is shown that the resulted morphology, tensile and impact strength are influenced by extrusion variables. Additionally the optimum processing conditions of ternary PP/PC/SEBS blends from Taguchi analysis was achieved.


2020 ◽  
Vol 67 (2) ◽  
pp. 115-120
Author(s):  
Raisa A. Alekhina ◽  
Victoriya E. Slavkina ◽  
Yuliya A. Lopatina

The article presents options for recycling polymers. The use of biodegradable materials is promising. This is a special class of polymers that can decompose under aerobic or anaerobic conditions under the action of microorganisms or enzymes forming natural products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts. (Research purpose) The research purpose is in reviewing biodegradable materials that can be used for the manufacture of products used in agriculture. (Materials and methods) The study are based on open information sources containing information about biodegradable materials. Research methods are collecting, studying and comparative analysis of information. (Results and discussion) The article presents the advantages and disadvantages of biodegradable materials, mechanical properties of the main groups of biodegradable polymers. The article provides a summary list of agricultural products that can be made from biodegradable polymer materials. It was found that products from the general group are widely used in agriculture. Authors have found that products from a special group can only be made from biodegradable polymers with a controlled decomposition period in the soil, their use contributes to increasing the productivity of crops. (Conclusions) It was found that biodegradable polymer materials, along with environmental safety, have mechanical properties that allow them producing products that do not carry significant loads during operation. We have shown that the creation of responsible products (machine parts) from biodegradable polymers requires an increase in their strength properties, which is achievable by creating composites based on them. It was found that the technological complexity of their manufacture and high cost are the limiting factors for the widespread use of biodegradable polymers at this stage.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


Sign in / Sign up

Export Citation Format

Share Document