scholarly journals Thermolysis of High-Density Polyethylene to Petroleum Products

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sachin Kumar ◽  
R. K. Singh

Thermal degradation of plastic polymers is becoming an increasingly important method for the conversion of plastic materials into valuable chemicals and oil products. In this work, virgin high-density polyethylene (HDPE) was chosen as a material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse virgin HDPE with an objective to optimize the liquid product yield at a temperature range of 400°C to 550°C. The chemical analysis of the HDPE pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The composition of the pyrolytic oil was analyzed using GC-MS, and it was found that the main constituents were n-Octadecane, n-Heptadecane, 1-Pentadecene, Octadecane, Pentadecane, and 1-Nonadecene. The physical properties of the obtained pyrolytic oil were close to those of mixture of petroleum products.

MRS Advances ◽  
2020 ◽  
Vol 5 (26) ◽  
pp. 1349-1356
Author(s):  
Michael Commeh ◽  
David Dodoo-Arhin ◽  
Edward Acquaye ◽  
Isaiah Nimako Baah ◽  
Nene Kwabla Amoatey ◽  
...  

AbstractPlastics generally play a very important role in a plethora of industries, fields and our everyday lives. In spite of their cheapness, availability and important contributions to lives, they however, pose a serious threat to the environment due to their mostly non-biodegradable nature. Recycling into useful products can reduce the amount of plastic waste. Thermal degradation (Pyrolysis) of plastics is becoming an increasingly important recycling method for the conversion of plastic materials into valuable chemicals and oil products. In this work, waste Polyethylene terephthalate (PET) water bottles were thermally converted into useful gaseous and liquid products. A simple pyrolysis reactor system has been used for the conversions with the liquid product yield of 65 % at a temperature range of 400°C to 550°C. The chemical analysis of the pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The main constituents were 1-Tetradecene, 1-Pentadecene, Cetene, Hexadecane, 1-Heptadecene, Heptadecane, Octadecane, Nonadecane, Eicosane, Tetratetracontane, 1-Undecene, 1-Decene). The results are promising and can be maximized by additional techniques such as hydrogenation and hydrodeoxygenation to obtain value-added products.


2021 ◽  
Vol 36 (5) ◽  
pp. 557-563
Author(s):  
A. G. Toroslu

Abstract Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3 . The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.


2017 ◽  
Vol 26 (5) ◽  
pp. 1920-1929 ◽  
Author(s):  
Lekhank Patil ◽  
Anil Kumar Varma ◽  
Gajendra Singh ◽  
Prasenjit Mondal

2014 ◽  
Vol 49 (6) ◽  
pp. 508-516 ◽  
Author(s):  
Behrooz Roozbehani ◽  
Bagher Anvaripour ◽  
Zahra Maghareh Esfahan ◽  
Mojtaba Mirdrikvand ◽  
Saeedeh Imani Moqadam

2019 ◽  
Vol 3 (1) ◽  
pp. 31-41
Author(s):  
Suprayitno Suprayitno ◽  
Sri Wiwoho Mudjanarko

Roads with flexible pavement are pavements that use asphalt as an aggregate binder, so they are much in demand rather than rigid pavement. Road infrastructure requires maintenance whose conditions must be maintained on an ongoing basis. The use of plastic packaging cannot be separated in everyday life. HDPE (High density polyethylene) is high density polyethylene. Based on the problem of the amount of used plastic waste currently available, this research is needed to find out how well the pavement uses the use of HDPE (High Density Polyethylene) plastic as mixed plastic waste. After testing the laboratory and analyzing it according to the General Highway Specifications for normal composition 1 without a mixture of 0%, the asphalt content that meets all the requirements is estimated at asphalt level between 5.6% - 6%. Whereas in composition 2-4 with HPDE plastic waste 4%, 8%, and 12%. From the results of the research with 4 different compositions, it is obtained that the optimal asphalt content composition of HDPE plastic mixture is 0-12% which meets the VIM and stability an optimal 8% HDPE plastic mixture was obtained with an optimum asphalt content of 4.45%


1992 ◽  
Vol 72 (2) ◽  
pp. 801-804 ◽  
Author(s):  
E. D. Stevens

Seven types of plastics sometimes used in construction of physiological chambers were tested for their utility as devices employed to measure oxygen or oxygen uptake. They were equilibrated with air and exposed to hypoxic water, and the release of oxygen from the plastic to the water was measured. Nylon, acetal, and polyvinylchloride released the least amount of oxygen and thus are the most useful; acrylic and high-density polyethylene are less useful; polycarbonate and Teflon should be avoided.


2015 ◽  
Vol 752-753 ◽  
pp. 331-336
Author(s):  
Jan Navratil ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
David Manas ◽  
Martin Bednarik ◽  
...  

Growing usage of radiation crosslinked plastic materials and utilization of their advantageous properties might raise a question of their future recycling. This paper deals with utilization of recycled irradiated polyamide 6 (rPA6x) which is used as a filler into low and high-density polyethylene (LDPE/HDPE) in concentrations 10 and 30 %. Mechanical properties of such blends were investigated and compared. Both blends show similar trend at all observed material characteristics. Elastic modulus representing material stiffness grown with increasing amount of the filler. Ultimate tensile strength and impact toughness decreased and hardness slightly increased. All the obtained results show that it is possible to use recycled radiation crosslinked PA6 as a filler but it is necessary to count with properties change.


Sign in / Sign up

Export Citation Format

Share Document