scholarly journals Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh A. Al-Suwayeh ◽  
Ehab I. Taha ◽  
Fahad M. Al-Qahtani ◽  
Mahrous O. Ahmed ◽  
Mohamed M. Badran

The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also,in vitroskin permeation of LOR was conducted. The effect of hydroxypropylβ-cyclodextrin (HPβ-CD), beta-cyclodextrin (β-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 μg/cm2/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HPβ-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HPβ-CD and may be promising in enhancing permeation.

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (06) ◽  
pp. 19-29
Author(s):  
Bhupendra G. Prajapati ◽  
◽  
Malay Jivani ◽  
Himanshu Paliwal ◽  

Mometasone furoate (MF) is a glucocorticoid prodrug that faces the problem of poor aqueous solubility. Nanoemulsion-based topical gel of MF was formulated to enhance its solubility and potential of treating skin conditions. The selection of oil, surfactant and co-surfactant was done based on their solubility with the drug. The nanoemulsion was prepared using rose oil as the oil phase. Tween 80 and Transcutol P were used as surfactant and co-surfactant and they were blended in different ratios (1:0, 1:1, 2:1 and 3:1 w/w). The pseudo ternary diagrams were developed using these excipients and formulations exhibiting considerable nanoemulsion region were selected. The formulations were optimized by using Design Expert software for the globule size and cumulative percent release. The nanoemulsion formulations were characterized for in vitro release and stability study. The optimized nanoemulsions consisting of 2 % w/w oil, 30 % w/w Smix (Surfactant: Co-surfactant) and 67.9 % w/w water were consolidated into Carbopol 940 gelling agent to prepare three nanoemulsion-based gel formulations or nanoemulgels (NEG1-NEG3). Nanoemulgels were evaluated for their stability and ex vivo permeation of MF. The outcomes suggested that skin permeation of MF from all the nanoemulgel formulations was significantly enhanced as compared to the marketed mometasone furoate topical formulation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6678
Author(s):  
Joanna Klebeko ◽  
Paula Ossowicz-Rupniewska ◽  
Anna Nowak ◽  
Ewa Janus ◽  
Wiktoria Duchnik ◽  
...  

This paper aimed to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen [IBU]. In vitro permeation experiments were performed using human abdominal skin and Strat-M™ membrane. The HPLC method was used for quantitative determinations. The formulations tested were hydrogels containing IBU and its derivatives and commercial gel with ibuprofen. The results obtained indicate that Celugel® had an enhancing effect on the skin penetration of IBU. The average cumulative mass of [IBU] after 24 h permeation test from Celugel® formulation through human skin was over 3 times higher than for the commercial product. Three ibuprofen derivatives containing [ValOiPr][IBU], [ValOPr][IBU], and [ValOBu][IBU] cation were evaluated as chemical penetration enhancers. The cumulative mass after 24 h of penetration was 790.526 ± 41.426, 682.201 ± 29.910, and 684.538 ± 5.599 μg IBU cm−2, respectively, compared to the formulation containing unmodified IBU-429.672 ± 60.151 μg IBU cm−2. This study demonstrates the perspective of the transdermal hydrogel vehicle in conjunction with the modification of the drug as a potential faster drug delivery system.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1027
Author(s):  
Lucia Montenegro ◽  
Ludovica Maria Santagati ◽  
Maria Grazia Sarpietro ◽  
Francesco Castelli ◽  
Annamaria Panico ◽  
...  

Lipid nanoparticles (LNPs) have been proposed as carriers for drug skin delivery and targeting. As LNPs effectiveness could be increased by the addition of chemical penetration enhancers (PE), in this work, the feasibility of incorporating PE into LNPs to improve idebenone (IDE) targeting to the skin was investigated. LNPs loading IDE 0.7% w/w were prepared using hydrophilic (propylene glycol, PG, 10% w/w or N-methylpyrrolidone, NMP, 10% w/w) and/or lipophilic PE (oleic acid, OA, 1% w/w; isopropyl myristate, IPM, 3.5% w/w; a mixture of 0.5% w/w OA and 2.5% w/w IPM). All LNPs showed small sizes (<60 nm), low polydispersity index and good stability. According to the obtained results, IDE release from LNPs was not the rate-limiting step in IDE skin penetration. No IDE permeation was observed through excised pigskin from all LNPs, while the greatest increase of IDE penetration into the different skin layers was obtained using the mixture OA/IPM. The antioxidant activity of IDE-loaded LNPs, determined by the oxygen radical absorbance capacity assay, was greater than that of free IDE. These results suggest that the use of suitable PE as LNPs components could be regarded as a promising strategy to improve drug targeting to the skin.


2008 ◽  
Vol 52 (10) ◽  
pp. 3633-3636 ◽  
Author(s):  
T. J. Karpanen ◽  
T. Worthington ◽  
B. R. Conway ◽  
A. C. Hilton ◽  
T. S. J. Elliott ◽  
...  

ABSTRACT This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.


2017 ◽  
Vol 3 (1) ◽  
pp. 43
Author(s):  
Nurul Arfiyanti Yusuf ◽  
Aisyah Fatmawaty

The research has conducted research on the effectiveness of isopropyl myristat as a penetration enhancer on the diffusion rate of whitening cream mulberry leaf extract (Morus alba L) in vitro. This study aims to determine the effect of the use of isopropyl myristat. Mulberry leaf extract cream made with varying concentrations respectively 3%, 4%, 5% Isopropyl myristat as penetration enhancers made into 3 formulas (F1-F4) with the F1 without penetration enhancers. Evaluation of stability before and after accelerated storage includes observation of the organoleptic, emulsion type determination, measurement of pH, and viscosity. The evaluation results indicate four physically stable formula. In vitro diffusion studies conducted by Franz diffusion cells and footage is measured at a wavelength of 367.4 nm. The results of diffusion studies show that formula with the highest diffusion rate of 0.024 µg/minute on F4 (5% isopropyl myristat).


Author(s):  
MAZAYA FADHILA ◽  
ABDUL MUN IM ◽  
MAHDI JUFRI

Objective: White mulberry (Morus alba) root extract has terpenoid, flavonoid, and stilbene compounds. The stilbenes, oxyresveratrol and resveratrol, have antioxidant and antityrosinase activities. Nanocarriers can help active ingredients to be delivered in a more efficient manner. The advantages of nanoemulsion on products include increased penetration, biocompatibility, and low toxicity due to its non-ionic properties and have the ability to combine the properties of lipophilic and hydrophilic active ingredients. The objective of this study was to prepare, characterize, and evaluate the in vitro skin penetration of M. alba root extract nanoemulsion. Methods: The M. alba root extract was prepared by ionic liquid-based microwave-assisted extraction method. Nanoemulsion was optimized and prepared using virgin coconut oil (VCO), Tween 80, and polyethylene glycol 400 (PEG 400) by aqueous phase-titration method to construct pseudoternary phase diagram. M. alba root extract nanoemulsion was characterized for droplet size, viscosity, zeta potential, and physical stability tests for 12 weeks. In vitro skin penetration of oxyresveratrol from nanoemulsion was determined by the Franz diffusion cell and was compared by macroemulsion preparation, then analyzed by high-performance liquid chromatography method. Results: Based on pseudoternary phase diagram, nanoemulsion of white mulberry root extract contained of 2% VCO and 18% mixture of surfactant Tween 80 and PEG 400 (1:1) was chosen. Nanoemulsion has average globule size of 81.61 nm, with polydispersity index 0.22, and potential zeta −1.56 mV. The cumulative penetration of oxyresveratrol from nanoemulsion was 55.86 μg/cm2 with flux of 6.53 μg/cm2/h, while regular emulsion was 32.45 μg/cm2 with flux of 3.5501 μg/cm2/h. Conclusion: Nanoemulsion of white mulberry root extract was penetrated deeper than regular emulsion.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Houman Savoji ◽  
Amir Mehdizadeh ◽  
Ahmad Ramazani Saadat Abadi

Nitroglycerin (TNG) transdermal drug delivery systems (TDDSs) with different acrylic pressure-sensitive adhesives (PSAs) and chemical permeation enhancers (CPEs) were prepared. The effects of PSAs and CPEs types and concentrations on skin permeation and in vitro drug release from devices were evaluated using the dissolution method as well as the modified-jacketed Franz diffusion cells fitted with excised rat abdominal skin. It was demonstrated that the permeation rate or steady state flux (Jss) of the drug through the excised rat skin was dependent on the viscosity and type of acrylic PSA as well as the type of CPE. Among different acrylic PSAs, Duro-Tak 2516 and Duro-Tak 2054 showed the highest and Duro-Tak 2051 showed the lowest Jss. Among the various CPEs, propylene glycol and cetyl alcohol showed the highest and the lowest enhancement of the skin permeation of TNG, respectively. The adhesion properties of devices such as 180° peel strength and probe tack values were obtained. It was shown that increasing the concentration of CPE led to reduction in the adhesion property of PSA. Moreover, after optimization of the formulation, it was found that the use of 10% PG as a CPE and 25% nitroglycerin loading in Duro-Tak 2054 is an effective monolithic DIAP for the development of a transdermal therapeutic system for nitroglycerin.


2014 ◽  
Vol 902 ◽  
pp. 70-75 ◽  
Author(s):  
Aroonsri Priprem ◽  
Vassana Netweera ◽  
Pramote Mahakunakorn ◽  
Nutjaree Pratheepawanit Johns ◽  
Jeffrey Roy Johns

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.


Author(s):  
Anayanti Arianto ◽  
Rizki Amelia ◽  
Hakim Bangun

Objective: Objective of the study was to evaluate the effect of Tween 80, palm kernel oil (PKO), and its conversion products (hydrolyzed and transesterificated products) on the in vitro rabbit skin penetration of indomethacin from hydrocarbon ointment base.Materials and Methods: In vitro penetration of indomethacin through hairless rabbit skin from hydrocarbon ointment base (white petrolatum) was evaluated using a diffusion cell. The effects of Tween 80, PKO, and its conversion products at various concentrations were evaluated.Results: The higher of the concentration of Tween 80 until 5%, the higher of the indomethacin penetration. However, at the concentration above 5%, the penetration was decreased with the increasing concentration of Tween 80 used. The amount of indomethacin penetrated increased with the increasing of the concentration of PKO and its conversion products used. Hydrolyzed product showed the higher indomethacin penetration enhancing effect than PKO. Transesterificated product showed the highest penetration enhancing effect. However, the combination of Tween 80 with transesterificated product showed lower penetration enhancing effect compared to transesterificated product only.Conclusion: Tween 80 at low concentrations, PKO, and its conversion products could be used to enhance indomethacin penetration.


2007 ◽  
Vol 57 (3) ◽  
pp. 315-332 ◽  
Author(s):  
Sanjula Baboota ◽  
Faiyaz Shakeel ◽  
Alka Ahuja ◽  
Javed Ali ◽  
Sheikh Shafiq

Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxibThe aim of the present study was to investigate the potential of nanoemulsion formulations for transdermal delivery of celecoxib (CXB). Thein vitroskin permeation profile of optimized formulations was compared with CXB gel and nanoemulsion gel. Significant increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement ratio (Er) was observed in nanoemulsion formulations T1 and T2 (p< 0.05). The highest value of these permeability parameters was obtained in formulation T2, which consisted of 2% (m/m) of CXB, 10% (m/m) of oil phase (Sefsol 218 and Triacetin), 50% (m/m) of surfactant mixture (Tween-80 and Transcutol-P) and 40% (m/m) water. The anti-inflammatory effects of formulation T2 showed a significant increase (p< 0.05) in inhibition after 24 h compared to CXB gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of CXB.


Sign in / Sign up

Export Citation Format

Share Document