scholarly journals Removing and Recovering Phosphate from Poultry Wastewater Using Amorphous Ceramics

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Youhui Xie ◽  
Qin Li ◽  
Xianzhi Zhao ◽  
Yi Luo ◽  
Yangming Wang ◽  
...  

A novel and effective technique for phosphate from poultry wastewater was developed using amorphous ceramics. Amorphous ceramics, which showed high performance for phosphate removal and recovery from poultry wastewater, were synthesized using unlimitedly available, inexpensive materials such as silica fume and lime. Dissolved phosphate in poultry wastewater can be deposited as a solid on the surface of amorphous ceramics. Phosphate content on the surface of amorphous ceramics could reach 14.20%. The phosphate removal and recovery process and mechanism was revealed by a series of characterizations, such as XRD, FESEM, BET, and so on. The present study demonstrated that amorphous ceramics have great potential as a novel, beneficial material for removing and recovering phosphate from poultry wastewater.

Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2021 ◽  
Vol 43 ◽  
pp. 2361-2367
Author(s):  
Damma Manikanta ◽  
Durga Prasad Ravella ◽  
Sri Rama Chand M. ◽  
Janardhan Yadav M.

2018 ◽  
Vol 1 ◽  
pp. 100003 ◽  
Author(s):  
Kaushik Venkiteshwaran ◽  
Nilisha Pokhrel ◽  
Faten Hussein ◽  
Edwin Antony ◽  
Brooke K. Mayer

Sign in / Sign up

Export Citation Format

Share Document