scholarly journals Impact of Direct Soil Moisture and Revised Soil Moisture Index Methods on Hydrologic Predictions in an Arid Climate

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Milad Jajarmizadeh ◽  
Sobri bin Harun ◽  
Shamsuddin Shahid ◽  
Shatirah Akib ◽  
Mohsen Salarpour

The soil and water assessment tool (SWAT) is a physically based model that is used extensively to simulate hydrologic processes in a wide range of climates around the world. SWAT uses spatial hydrometeorological data to simulate runoff through the computation of a retention curve number. The objective of the present study was to compare the performance of two approaches used for the calculation of curve numbers in SWAT, that is, the Revised Soil Moisture Index (SMI), which is based on previous meteorological conditions, and the Soil Moisture Condition II (SMCII), which is based on soil features for the prediction of flow. The results showed that the sensitive parameters for the SMI method are land-use and land-cover features. However, for the SMCII method, the soil and the channel are the sensitive parameters. The performances of the SMI and SMCII methods were analyzed using various indices. We concluded that the fair performance of the SMI method in an arid region may be due to the inherent characteristics of the method since it relies mostly on previous meteorological conditions and does not account for the soil features of the catchment.

Author(s):  
Tiago de M. Inocêncio ◽  
Alfredo Ribeiro Neto ◽  
Alzira G. S. S. Souza

ABSTRACT The sequence of drought events in the Northeast of Brazil in recent decades raises attention to the importance of studying this phenomenon. The objective of this study was to evaluate the duration and severity of drought events from 1988 to 2018 in hydrographic basins of the state of Pernambuco, Brazil, using two drought indexes: Standardized Soil Moisture Index and Soil Moisture Condition Index, calculated based on data of the Soil Moisture Project of the European Space Agency’s Climate Change Initiative. The duration of the droughts was determined considering the months between their beginning and end, and their severity was based on the area formed in the graph between the curve of the index and the x-axis. The soil moisture database showed to be a promising tool for the analysis and monitoring of drought events in the Northeast region of Brazil, mainly for analysis and monitoring of drought events. The indexes allowed the evaluation of the drought phenomenon over the 30-year period, showing increases from 2012, which were more pronounced in the Semiarid region. The hydrographic basins responded differently to a same event, depending on the climate characteristics of the region in which they are located. Consecutive years with rainfall below the historical mean increased the magnitude of the droughts, as found for the 2012-2017 period, in which the indexes presented delays to return to more favorable values, showing the effect that one drought year has on the following year.


Author(s):  
Dede Dirgahayu ◽  
Parwati Sofan

From this research, it is found that reflectances in the first, second, and sixth channels (R1, R2, R6) of MODIS have high correlations with surface soil moisture (percent weight) at 0-20 cm depth. An index called Land Moisture INdex (LMI) was created from the linier combination of R1 (percent), R2(percent), and R6 (percent). The MODIS reflectances and field soil moisture in paddy field taken from the Central and East Java during Juli-September 2005 are applied into the previous model which have been generated from data during July-September 2004. The result showed that there was a high correlation between Land/Soil Moisture (SM) which was measured from field survey, and LMI which was generated from the MODIS refectances. The best model equation between SM and LMI is the power regression model, which has the coeficient of determination of 88 percent. It is implied that soil moisture condition can be obtained from the MODIS data using LAnd Moisture Index. Therefore, the spatial information of drouht condition analysed throught the soil moisture in the agricultural land can be provided from the MODIS data. Keywords: Land Moisture Index, Soil Moisture Estimation, Spatial information, drought.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1564 ◽  
Author(s):  
Melanie Oertel ◽  
Francisco Meza ◽  
Jorge Gironás ◽  
Christopher A. Scott ◽  
Facundo Rojas ◽  
...  

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.


2012 ◽  
Author(s):  
Raheleh Malekian ◽  
Robert Gordon ◽  
Ali Madani ASABE Member ◽  
Seyyed Ebrahim Hashemi

1979 ◽  
Vol 27 (3) ◽  
pp. 191-198
Author(s):  
J.H. Smelt ◽  
A. Dekker ◽  
M. Leistra

The decomposition of oxamyl in four soils under moist conditions was measured in incubation experiments at 15 deg C. Half-lives of oxamyl in soils with moisture tensions of approx. -9.8 X 103 Pa were 13 days in a clay loam, 14 days in a loamy sand, 34 days in a peaty sand and 39 days in a humic loamy sand. The rate of oxamyl decomposition in the clay loam decreased with decreasing soil moisture content down to values for below wilting point. Oxamyl decomposition in the humic loamy sand decreased with decreasing soil moisture content, but increased sharply in the very dry range. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Diandong Ren

AbstractBased on a 2-layer land surface model, a rather general variational data assimilation framework for estimating model state variables is developed. The method minimizes the error of surface soil temperature predictions subject to constraints imposed by the prediction model. Retrieval experiments for soil prognostic variables are performed and the results verified against model simulated data as well as real observations for the Oklahoma Atmospheric Surface layer Instrumentation System (OASIS). The optimization scheme is robust with respect to a wide range of initial guess errors in surface soil temperature (as large as 30 K) and deep soil moisture (within the range between wilting point and saturation). When assimilating OASIS data, the scheme can reduce the initial guess error by more than 90%, while for Observing Simulation System Experiments (OSSEs), the initial guess error is usually reduced by over four orders of magnitude.Using synthetic data, the robustness of the retrieval scheme as related to information content of the data and the physical meaning of the adjoint variables and their use in sensitivity studies are investigated. Through sensitivity analysis, it is confirmed that the vegetation coverage and growth condition determine whether or not the optimally estimated initial soil moisture condition leads to an optimal estimation of the surface fluxes. This reconciles two recent studies.With the real data experiments, it is shown that observations during the daytime period are the most effective for the retrieval. Longer assimilation windows result in more accurate initial condition retrieval, underlining the importance of information quantity, especially for schemes assimilating noisy observations.


2008 ◽  
Vol 9 (4) ◽  
pp. 660-676 ◽  
Author(s):  
Venkataramana Sridhar ◽  
Kenneth G. Hubbard ◽  
Jinsheng You ◽  
Eric D. Hunt

Abstract This paper examines the role of soil moisture in quantifying drought through the development of a drought index using observed and modeled soil moisture. In Nebraska, rainfall is received primarily during the crop-growing season and the supply of moisture from the Gulf of Mexico determines if the impending crop year is either normal or anomalous and any deficit of rain leads to a lack of soil moisture storage. Using observed soil moisture from the Automated Weather Data Network (AWDN), the actual available water content for plants is calculated as the difference between observed or modeled soil moisture and wilting point, which is subsequently normalized with the site-specific, soil property–based, idealistic available water for plants that is calculated as the difference between field capacity and wilting point to derive the soil moisture index (SMI). This index is categorized into five classes from no drought to extreme drought to quantitatively assess drought in both space and time. Additionally, with the aid of an in-house hydrology model, soil moisture was simulated in order to compute model-based SMI and to compare the drought duration and severity for various sites. The results suggest that the soil moisture influence, a positive feedback process reported in many earlier studies, is unquestionably a quantitative indicator of drought. Also, the severity and duration of drought across Nebraska has a clear gradient from west to east, with the Panhandle region experiencing severe to extreme drought in the deeper soil layers for longer periods (>200 days), than the central and southwestern regions (125–150 days) or the eastern regions about 100 days or less. The anomalous rainfall years can eliminate the distinction among these regions with regard to their drought extent, severity, and persistence, thus making drought a more ubiquitous phenomenon, but the recovery from drought can be subject to similar gradations. The spatial SMI maps presented in this paper can be used with the Drought Monitor maps to assess the local drought conditions more effectively.


1917 ◽  
Vol 63 (2) ◽  
pp. 151-152
Author(s):  
Francis Ramaley

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 866 ◽  
Author(s):  
Myriam Foucras ◽  
Mehrez Zribi ◽  
Clément Albergel ◽  
Nicolas Baghdadi ◽  
Jean-Christophe Calvet ◽  
...  

The aim of this study is to estimate surface soil moisture at a spatial resolution of 500 m and a temporal resolution of at least 6 days, by combining remote sensing data from Sentinel-1 and optical data from Sentinel-2 and MODIS (Moderate-Resolution Imaging Spectroradiometer). The proposed methodology is based on the change detection technique, applied to a series of measurements over a three-year period (2015 to 2018). The algorithm described here as “Soil Moisture Estimations from the Synergy of Sentinel-1 and optical sensors (SMES)” proposes different options, allowing information from vegetation densities and seasonal conditions to be taken into account. The output from this algorithm is a moisture index ranging between 0 and 1, with 0 corresponding to the driest soils and 1 to the wettest soils. This methodology has been tested at different test sites (South of France, Central Tunisia, Western Benin and Southwestern Niger), characterized by a wide range of different climatic conditions. The resulting surface soil moisture estimations are compared with in situ measurements and already existing satellite-derived soil moisture ASCAT (Advanced SCATterometer) products. They are found to be well correlated, for the African regions in particular (RMSE below 6 vol.%). This outcome indicates that the proposed algorithm can be used with confidence to estimate the surface soil moisture of a wide range of climatically different sites.


Sign in / Sign up

Export Citation Format

Share Document