scholarly journals Evaluation of Production Parameters for Maximum Lipase Production by P. stutzeri MTCC 5618 and Scale-Up in Bioreactor

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Vishal Thakur ◽  
R. Tewari ◽  
Rohit Sharma

Intracellular lipase producer screened from the library available in the laboratory, identified through 16S rRNA as Pseudomonas stutzeri, was studied for maximum enzyme production in shake flask. The work was intended to evaluate the effect of different physicochemical factors like carbon, nitrogen, metal ions, surfactant, inoculum, pH, temperature, agitation, and aeration on lipase production. Optimized media showed 1.62-fold increase in lipase production when compared to basal media. Scale-up of lipase in in situ bioreactor showed reduction in fermentation time in both basal and optimized media, giving 41 and 99 U/mg of lipase activity after 48 h of fermentation.

2017 ◽  
Vol 80 (12) ◽  
pp. 2137-2146 ◽  
Author(s):  
Dimitrios Noutsopoulos ◽  
Athanasia Kakouri ◽  
Eleftheria Kartezini ◽  
Dimitrios Pappas ◽  
Efstathios Hatziloukas ◽  
...  

ABSTRACT This study evaluated in situ expression of the nisA gene by an indigenous, nisin A–producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A–mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Omar E Guessoum ◽  
Kristyna Kupkova ◽  
Nathan Sheffield ◽  
Maria Luisa Sequeira Lopez ◽  
Roberto A Gomez

Introduction: The Renin-Angiotensin-System is essential to maintain blood pressure and fluid electrolyte homeostasis. Because precise regulation of expression and release of renin is critical for survival, understanding the molecular regulation of the renin cell identity is a vital area of study. Advances in epigenetics have enabled finer dissection of chromatin factors which maintain the identity of the renin cell. By studying genes with heightened accessibility profiles that are unique to the JG cell, we now have the capacity to unravel the determinants of the renin cell identity. Hypothesis: That transcription factors central to the governance of renin cell identity can be identified through the Assay for Transposase Accessible Chromatin (ATAC-seq) differential accessibility analysis. Methods: Native renin cell ATAC-seq was compared to existing ENCODE ATAC-seq datasets from 40 other cell types to define regions/peaks which characterize the JG program. Peaks with high intensity and ≥2-fold increase in signal were selected for Motif analysis to search for transcription factors (TFs) whose consensus sequence is enriched in those regions. Identified TFs were then selected for validation by in-situ hybridization and conditional deletion in renin cells. Results: 1) The Mef2c transcription factor was identified as having a consensus sequence in regulatory regions unique to the JG cell. It has clear expression in RNA-seq of renin cells (65 transcripts per million, n=3) and a predicted binding site in the renin gene. These results were validated by in-situ hybridization where signal localized at the JG area was detected in concordance with our in-silico results. 2) We generated Mef2c conditional knockout animals using our Ren1d-Cre mouse to study the effect in renin expression and identity. These mice displayed reduced renin immunostaining at the JG area and a 40% reduction in renin mRNA expression by qPCR from kidney cortices relative to wild-type (n=2, preliminary data). Conclusions: Our studies identified Mef2c as a TF target which likely has an essential role in maintaining and preserving renin cell identity. Experiments involving transcriptomics and epigenomics are ongoing to understand the changes wrought by Mef2c deletion in renin cells.


2016 ◽  
Vol 14 (13) ◽  
pp. 3423-3431 ◽  
Author(s):  
Benjamin J. Deadman ◽  
Rosella M. O'Mahony ◽  
Denis Lynch ◽  
Daniel C. Crowley ◽  
Stuart G. Collins ◽  
...  

In situ generation and use of tosyl azide in flow enables enhanced safety and ready scale-up in diazo transfer processes.


1989 ◽  
Vol 169 (5) ◽  
pp. 1565-1581 ◽  
Author(s):  
C L Cooper ◽  
C Mueller ◽  
T A Sinchaisri ◽  
C Pirmez ◽  
J Chan ◽  
...  

Analysis of tissue lesions of the major reactional states of leprosy was undertaken to study the immune mechanisms underlying regulation of cell-mediated immunity and delayed-type hypersensitivity (DTH) in man. In situ hybridization hybridization of reversal reaction biopsy specimens for INF-gamma mRNA expression revealed a 10-fold increase in specific mRNA-containing cells over that observed in unresponsive lepromatous patients. Expression of huHF serine esterase, a marker for T cytotoxic cells, were fourfold increased in reversal reaction and tuberculoid lesions above that detected in unresponsive lepromatous individuals. Immunohistology of reversal reactions confirmed a selective increase of Th and T cytotoxic cells in the cellular immune response. Of interest, the microanatomic location of these serine esterase mRNA-containing cells was identical to the distribution of CD4+ cells. Analysis of erythema nodosum leprosum (ENL) lesions revealed differences in the underlying immune processes in comparison with reversal reaction lesions. Although phenotypic Th cells predominated in ENL lesions, IFN-gamma and serine esterase gene expression were markedly reduced. We suggest that reversal reactions represent a hyperimmune DTH response characterized by a selective increase of CD4+ IFN-gamma producing cells and T cytotoxic cells, which result in the clearing of bacilli and concomitant tissue damage. In contrast, ENL reactions may be viewed as a transient diminution of Ts cells and activity leading to a partial and transient augmentation in cell-mediated immunity, perhaps sufficient to result in antibody and immune complex formation, but insufficient to clear bacilli from lesions.


2021 ◽  
Vol 68 (3) ◽  
pp. 575-586
Author(s):  
Noura Semache ◽  
Fatiha Benamia ◽  
Bilal Kerouaz ◽  
Inès Belhaj ◽  
Selma Bounour ◽  
...  

This work mainly focused on the production of an efficient, economical, and eco-friendly lipase (AKL29) from Actinomadura keratinilytica strain Cpt29 isolated from poultry compost in north east of Algeria, for use in detergent industries. AKL29 shows a significant lipase activity (45 U/mL) towards hydrolyzed triacylglycerols, indicating that it is a true lipase. For maximum lipase production the modeling and optimization of potential culture parameters such as incubation temperature, cultivation time, and Tween 80 (v/v) were built using RSM and ANN approaches. The results show that both the two models provided good quality predictions, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. A 4.1-fold increase in lipase production was recorded under the following optimal condition: incubation temperature (37.9 °C), cultivation time (111 h), and Tween 80 (3.27%, v/v). Furthermore, the partially purified lipase showed good stability, high compatibility, and significant wash performance with various commercial laundry detergents, making this novel lipase a promising potential candidate for detergent industries.


2013 ◽  
Vol 67 (4) ◽  
pp. 677-685 ◽  
Author(s):  
Sonja Jakovetic ◽  
Zorica Knezevic-Jugovic ◽  
Sanja Grbavcic ◽  
Dejan Bezbradica ◽  
Natasa Avramovic ◽  
...  

Pseudomonas aeruginosa was repeatedly reported as powerful producer of rhamnolipid biosurfactants as well as producer of hydrolytic enzymes. In this study effects of four fermentation factors were evaluated using response surface methodology and experiments were performed in accordance with a four-factor and five-level central composite experimental design. Investigated factors were: fermentation temperature, time of fermentation, concentration of sunflower oil and concentration of Tween? 80. The most important finding was that regression coefficients of the highest values were those that describe interactions between factors and that they differ for lipase and rhamnolipid production, which were both investigated in this study. Production of both metabolites was optimized and response equations were obtained, making it possible to predict rhamnolipid concentration or lipase activity from known values of the four factors. The highest achieved rhamnolipid concentration and lipase activity were 138 mg dm-3 (sunflower oil concentration 0.8 %, Tween? 80 concentration 0.05 %, temperature 30?C, and fermentation time 72 h) and 11111 IU dm-3(sunflower concentration of 0.4 %, Tween? 80 concentration of 0.05 %, temperature of 30?C, and fermentation time of 120 h), respectively.


1999 ◽  
Vol 65 (12) ◽  
pp. 5493-5499 ◽  
Author(s):  
Douglas O. Mountfort ◽  
Heinrich F. Kaspar ◽  
Malcolm Downes ◽  
Rodney A. Asher

ABSTRACT A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ∼0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.


Parasitology ◽  
1995 ◽  
Vol 111 (3) ◽  
pp. 275-287 ◽  
Author(s):  
E. M. B. Saraiva ◽  
P. F. P. Pimenta ◽  
T. N. Brodin ◽  
E. Rowton ◽  
G. B. Modi ◽  
...  

SUMMARYStage-specific molecular and morphogenic markers were used to follow the kinetics of appearance, number, and position of metacyclic promastigotes developing during the course ofL. majorinfection in a natural vector,Phlebotomus papatasi. Expression of surface lipophosphoglycan (LPG) on transformed promastigotes was delayed until the appearance of nectomonad forms on day 3, and continued to be abundantly expressed by all promastigotes thereafter. An epitope associate with arabinose substitution of LPG side-chain oligosaccharides, identified by its differential expression by metacyclics invitro, was detected on the surface of a low proportion of midgut promastigotes beginning on day 5, and on up to 60% of promatigotes on days 10 and 15. In contrast 100% of the parasites egested from the mouthparts during forced feeding of 15 day infected flies stained strongly for this epitope. At each time-point, the surface expression of the modified LPG was restricted to morphologically distinguished metacyclic forms. Ultrastructural study of the metacyclic surface revealed an approximate 2-fold increase in the thickness of the surface coat compared to nectomonad forms, suggesting elongation of LPG as occurs during metacyclogenesisin vitro. A metacyclic-associated transcript (MAT-1), another marker identified by its differential expression invitro, also showed selective expression by promastigotes in the fly, and was used inin situhybridization studies to demonstrate the positioning of metacyclics in the anterior gut.


Sign in / Sign up

Export Citation Format

Share Document