scholarly journals Miniaturized Wideband Aperture Coupled Microstrip Patch Antenna by Using Inverted U-Slot

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amandeep Singh ◽  
Surinder Singh

This paper presents a linear polarized aperture coupled inverted U-slot patch antenna with small steps at the edges. The proposed design exhibits wideband behavior, acceptable return loss, VSWR, gain, small size, and less complexity. The theoretical analysis is based on the finite element method (FEM). This design has wide bandwidth, good return loss, VSWR, and radiation characteristics by implanting the inverted U-shaped stepped slots on a single aperture coupled patch. The proposed antenna design shows the measured return loss within acceptable range throughout the band (11.08 GHz–13.25 GHz) and maximum return loss is achieved with proper impedance matching. In this paper, the design considerations are presented and results are validated by the calculated and measured parameters.

Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 321-330 ◽  
Author(s):  
Manisha Gupta ◽  
Vinita Mathur ◽  
Arun Kumar ◽  
Virendra Saxena ◽  
Deepak Bhatnagar

Abstract Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.


Author(s):  
Priyanka Jain ◽  
Raghavendra Sharma ◽  
Vandana Vikas Thakre

In this proposed design a Rectangular E shaped micro-strip patch antenna is present with rectangular and circular slot within the Rectangular patch which operate at frequency 2.4 GHz. By proposed antenna design and coaxial feeding at suitable place  the resultant return loss, VSWR and bandwidth will be find out. For the propose microstrip antenna we have use FR-4 substrate which contain permittivity of 4.4 and thickness 1.5, loss tangent is 0.02. HFSS simulation software is used for designing and analysis.


2016 ◽  
Vol 4 (1) ◽  
pp. 43-45
Author(s):  
Vijay Dandotiya ◽  
Chetan Pathak

Author proposed a new design of meta-material to provide advancement into the factors of the rectangular microstrip patch antenna (RMPA) “Enhancement in RMPA parameters Rhombus Connected With Circle Meta material structure high using at 1.9GHz” As a rectangular microstrip patch antenna is designed at a height of 1.6mm & Left handed Meta material structure is designed at a height of 3.2mm from the ground plane by using CST-MWS software. The resonance frequency 1.9GHz of the designed antenna is using as a high frequency. This paper mainly worked on return loss. The Return loss of the proposed antenna reduced to -31,16dB & bandwidth is increased up to 41.9MHz. This antenna is small size, cheap, compact and easy to fabricate, and achieve good radiation characteristics with higher return loss. In this paper return loss basically defined as system becomes stable with reduced return loss.


Author(s):  
Brijesh Kumar Soni ◽  
Kamaljeet Singh ◽  
Amit Rathi ◽  
Sandeep Sancheti

In recent times rectangular patch antenna design has become the most innovative and popular subject due to its advantages, such as being lightweight, conformal, ease to fabricate, low cost and small size. In this paper design of aperture coupled microstrip patch antenna (MSA) on high index semiconductor material coupled with micromachining technique for performance enhancement is discussed. The performance in terms of return loss bandwidth, gain, cross-polarization and antenna efficiency is compared with standard aperture coupled antenna. Micromachining underneath of the patch helps in to reduce the effective dielectric constant, which is desirable for the radiation characteristics of the patch antenna. Improvement 36 percent and 18 percent in return loss bandwidth and gain respectively achieved using micromachined aperture coupled feed patch, which is due to the reduction in losses, suppression of surface waves and substrate modes. In this article along with design, fabrication aspects on Si substrate using MEMS process also discussed. Presented antenna design is proposed antenna can be useful in smart antenna arrays suitable in satellite, radar communication applications. Two topologies at X-band are fabricated and comparison between aperture coupled and micromachined aperture coupled are presented. Index Terms—Microstrip Patch Antenna, Aperture Coupled, Micromachining, High Resistivity Silicon


Author(s):  
Sunanda Roy ◽  
Himadri Shekhar Mondal ◽  
Md. Nurunnabi Mollah

This research consists of a suggestion and exploring the effect of a completing equilateral trilateral Censored separated roar resonator (CETCSRR) predictable antenna with microstrip patch has been investigated at 2.44 GHz on behalf of Wireless local area network (WLAN) practices as well as confirmation of validification by comparing simulation result of complete antenna and the corresponding circuit model. The CETCSRR structure potentially increases performance of proposed antenna and resonance frequency shifted to the lower frequency reason. The electromagnetic behaviour of CETCSRR is analysed for understanding the antenna mechanism. The parameters that considered in proposed structure are return loss, radiation characteristics, resonant frequency, polarization, directivity, bandwidth and gain in terms of size of CETCSRR, distance between two CETCSRR, number of CETCSRRs and orientation pattern of two CETCSRR. The focusing parameters achieved meaningful performances of return loss, directivity, radiation characteristics and gain that obtained from the single CETCSRR as well as dual CETCSRR patch antenna that may provide better coverage in WLAN application.


2020 ◽  
Vol 6 (5) ◽  
pp. 1-5
Author(s):  
Rovin Tiwari ◽  
Raghavendra Sharma ◽  
Rahul Dubey

A research on Antenna design and simulation is a emerging area among researchers. Antenna is a basic element for wireless communication. There are various shaps and types of antenna, which uses in different allpication. Now a days Microstrip patch anteena is very useful in advance electronics devices applications. This paper focused on study based various types of microstrip antenna. Return loss, VSWR, bandwidth, resonant frequency and gain is key parameters to judge antenna performance. Good value of return loss is less than -10dB. Considerable range of VSWR is 1-2. CST microwave studio is a advance software to design and simulation of all types of antenna, filter etc.


In this the proposed patch antenna operates at 32 GHz which is among the projected 5G communication frequencies and has a novel geometry with rhombus-shaped slots. The first design in this work is a inset fed used conventionally in patch antenna. It has a quarter wavelength impedance matching line. The dimensions are determined according to the usual design considerations. Low return loss and high bandwidth requirements motivates us to modify the antenna design. Therefore, we add rhombus – shaped slots on the patch which leads to an additional increase in the system bandwidth as much as 52 MHz and a reduction in the return loss level up to 11.241 dB. The proposed patch antenna design is conjectured to be a suitable candidate to address the requirements of 5G communication systems. The operating frequency of the proposed antenna can be tuned by changing the geometrical dimensions from microwave to the THz region.


Author(s):  
PREET KAUR ◽  
RAJIV NEHRA ◽  
MANJEET KADIAN ◽  
DR. ASOK DE ◽  
DR. S.K. AGGARWAL

In this paper, two novel defected ground structures (DGS) are proposed to improve the return loss, compactness, gain and radiation efficiency of rectangular microstrip patch antenna. The performance of antenna is characterized by the shape, dimension & the location of DGS at specific position on ground plane. By incorporating a peacock shaped slot of optimum geometries at suitable location on the ground plane, return loss is enhanced from -23.89 dB to -43.79 dB, radiation efficiency is improved from 97.66% to 100% and compactness of 9.83% is obtained over the traditional antenna .Simulation results shows that the patch antenna with star shaped DGS can improve the impedance matching with better return loss of -35.053 dB from -23.89 dB and compactness of 9% is achieved. In the end comparison of both DGS shapes is carried out to choose one best optimize one. The proposed antennas are simulated and analyzed using Ansoft HFSS (version 11.1) software.


Sign in / Sign up

Export Citation Format

Share Document