scholarly journals Characteristic Modeling and Control of Servo Systems with Backlash and Friction

2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Yifei Wu ◽  
Zhihong Wang ◽  
Yuanyuan Li ◽  
Wei Chen ◽  
Renhui Du ◽  
...  

A novel approach for modeling and control of servo systems with backlash and friction is proposed based on the characteristic model. Firstly, to deal with friction-induced nonlinearities, a smooth Stribeck friction model is introduced. The backlash is modeled by a continuous and derivable mathematical function. Secondly, a characteristic model in the form of a second-order slowly time-varying difference equation is established and verified by simulations. Thirdly, a composite controller including the golden-section adaptive control law and the integral control law is designed and the stability of the closed-loop system is analyzed. The simulation and experimental results show that the proposed control scheme is effective and can improve the steady-state precision and the dynamic performance of the servo system with backlash and friction.

Author(s):  
Byungchan Jung ◽  
Henryk Flashner ◽  
Jill McNitt-Gray

A model of a wheeled platform that includes slipping is formulated. Slipping is modeled by adopting the LuGre friction model. This is a dynamic friction model that can reproduce realistic friction phenomena not present in static friction models. Using the backstepping approach, tracking controllers for non-slipping and slipping cases are developed and compared via simulation. The proposed control law is designed to be robust with respect to the change in system parameters such as the platform’s mass and moment inertia. Simulation results show good performance for point stabilization in specific destination postures, as well as for tracking.


2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Robotica ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. H. Chung ◽  
S. A. Velinsky

This paper concerns the modeling and control of a mobile manipulator which consists of a robotic arm mounted upon a mobile platform. The equations of motion are derived using the Lagrange-d'Alembert formulation for the nonholonomic model of the mobile manipulator. The dynamic model which considers slip of the platform's tires is developed using the Newton-Euler method and incorporates Dugoff's tire friction model. Then, the tracking problem is investigated by using a well known nonlinear control method for the nonholonomic model. The adverse effect of the wheel slip on the tracking of commanded motion is discussed in the simulation. For the dynamic model, a variable structure control approach is employed to minimize the harmful effect of the wheel slip on the tracking performance. The simulation results demonstrate the effectiveness of the proposed control algorithm.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Renato Galluzzi ◽  
Andrea Tonoli ◽  
Nicola Amati

The implementation of variable damping systems to increase the adaptability of mechanical structures to their working environment has been gaining increasing scientific interest, and numerous attempts have been devoted to address vibration control by means of active and semi-active devices. Although research results seem promising in some cases, the proposed solutions are often not able to fulfill requirements in terms of compactness and simplicity on one hand, and dynamic performance on the other. In this context, the present paper discusses the modeling and control of an electrohydrostatic actuation (EHA) system for its implementation as a damping device. A model of the device is proposed and analyzed for design purposes. Subsequently, a damping control strategy is presented. Finally, a case study introduces and validates an EHA prototype for helicopter rotor blade lead–lag damping.


2014 ◽  
Vol 960-961 ◽  
pp. 808-812
Author(s):  
Wen Qiang Xu ◽  
Zhi Yong Dai ◽  
Qiang Gang Wang ◽  
Shu Pan ◽  
Nian Cheng Zhou

This paper presents a control strategy of solid oxide fuel cell (SOFC) generation system integrated into microgrid. To enhance the dynamic response of SOFC, storage battery is paralleled via a DC bus, and the hysteretic control of bi-directional DC-DC converter is adopted. The common DC-AC inverter adopts an improved droop control. The active synchronization control is applied to ensure the smooth mode transition of microgrid. The simulation results show the dynamic performance of SOFC generation system in different operation modes.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Duo-Qing Sun ◽  
Zhu-Mei Sun

This paper is concerned with the problem of the asymptotic stability of the characteristic model-based golden-section control law for multi-input and multi-output linear systems. First, by choosing a set of polynomial matrices of the objective function of the generalized least-square control, we prove that the control law of the generalized least square can become the characteristic model-based golden-section control law. Then, based on both the stability result of the generalized least-square control system and the stability theory of matrix polynomial, the asymptotic stability of the closed loop system for the characteristic model under the control of the golden-section control law is proved for minimum phase system.


2014 ◽  
Vol 621 ◽  
pp. 462-469 ◽  
Author(s):  
Ming Zhu Zhang ◽  
Zhi Li Zhou

To develop the control system of multi-range hydro-mechanical continuously variable transmission (HMCVT), a model of a multi-range HMCVT is built using the principle of dynamics. According to the characteristic of power split, HMCVT is separated as axes set, variable displacement pump-motor system, clutch set. With wheel tractor as application instance, the whole model of vehicle power train is made, which includes the engine, HMCVT, running system and control system. Based on the theory of Finite State Machine, an automatic control method of speed change and range shift is present, which employs the throttle value, engine speed, range number and transmission ratio as the control parameters. The dynamic characteristic of automatic speed changing and ranges shifting is simulated. The result indicates that the model can correctly represent the dynamic characteristic of HMCVT, the engine can run at the optimal working point, the multi-range HMCVT can shift range steadily and change transmission ratio continuously when the load changes, the circularly shift range is avoided. The model can be used conveniently for the analysis of vehicle dynamic performance and the research of multi-range HMCVT control method.


Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


1998 ◽  
Vol 120 (1) ◽  
pp. 221-227 ◽  
Author(s):  
C. D. Rahn ◽  
S. Joshi

This paper introduces models for electrorheological (ER) structures based on visco-elasticity and sandwich beam theory. The partial differential equations describing the dynamics of an ER sandwich beam are derived and a modal analysis is performed. Feedback controllers, derived using Lyapunov theory, ensure stability of all modes of the beam. Feedback from an axial velocity sensor to the applied ER beam voltage provides an implementable approximation to the control law. Simulations of a cantilevered ER beam show the stable response and improved transient decay provided by the control system.


Author(s):  
Xin Wang

In this work, the models and control strategy of the Electric Servo-torque System(ESS) which is used as an experiment rig for conducting dynamic performance and stability tests of aerial vehicle control surface actuation systems are presented. The detailed dynamics of the load motor and loaded flight actuator’s rotating movement in the ESS are analyzed, leading to an integrated load torque synchronization system. The kinematic dynamics of the loaded control surface driving actuator is an important consideration to estimate the trend of torque variation and to improve the performance of the load system. The load control method is expressed in terms of a multi-loop torque control law, which uses feedback and feedforward loops to meet system design requirements. Numerical examples together with experimental results are included to illustrate the effectiveness of the proposed models and control parameters. This brief addressed a specific utilization of the loaded actuator’s dynamics, revealing that it can reduce both the phase lag and the amplitude gain of the load torque in the Electric Servo-torque System.


Sign in / Sign up

Export Citation Format

Share Document