scholarly journals Effect of Coupling Agent on the Properties of Polymer/Date Pits Composites

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fares D. Alsewailem ◽  
Yazeed A. Binkhder

The morphology of the fracture surfaces of polymer/date pits composites was investigated. Polymers used in this study were high density polyethylene (HDPE) and polystyrene (PS). Date pits in the form of granules were two types of date pits: khlaas (K) and sekari (S). Two coupling agents, diphenylmethane-4 4′-diisocyanate (DPMI) and ethylene propylene grafted with malice anhydride (EP-g-MA), were used to ease the incorporation of date pit particles into polymer matrix. The SEM micrographs of the neat composites, that is, with no coupling agents, showed coarse morphology with bad dispersion, adhesion, and distribution of date pit particles within the polymer matrix. On the other hand, PS100/K composites coupled with DPMI and EP-g-MA had reasonable dispersed phase size with good distribution and adhesion to the composite matrix which in turn improve the mechanical properties of the resulted polymer/date pits composites.

2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


2012 ◽  
Vol 200 ◽  
pp. 321-324 ◽  
Author(s):  
Zhao Xia Wang ◽  
De Gao ◽  
Wen Cai Xu

Mechanical properties of the calcium-plastic composite have a great influence on the containers. The main factors affecting the mechanical properties are the process and material formulations. This paper mainly describes its impact of the addition of coupling agent. Under the usage of analysis of variance on single factor experiment, the mechanical properties of the calcium carbonate-plastic composite with three different coupling agents (silane, titanate and aluminate) were studied in the same test conditions. The results show that: The type and quantity of the coupling agent effect a lot on the mechanical properties of the composite. The silane coupling agent is the most suitable for calcium carbonate-plastic composite packaging materials, and the compatibility of calcium carbonate and polyethylene can be improved. When the silane coupling agent was at a 2.25 wt. % concentration, the tensile and flexural strength were improved obviously, especially the tensile strength increased by 23.24%, but the impact strength improved slightly.


2007 ◽  
Vol 555 ◽  
pp. 479-484 ◽  
Author(s):  
D. Stojanović ◽  
P. S. Uskoković ◽  
I. Balać ◽  
V.J. Radojević ◽  
R. Aleksić

Composites with nano-SiO2 particles and high density polyethylene (HDPE) matrix were produced by hot pressing with various particle contents and particle surface treatment using commercially available silane coupling agents: γ-methacryloxypropyltrimethoxy silane and γ- glycidyloxypropyltrimethoxysilane. The influence of the particle treatment on the mechanical properties of composites was determined by compression and indentation tests. Additionally, numerical analysis was performed in order to calculate Young’s modulus and stress concentrations for various particle contents in order to provide reference data by simulating micro- and macro particle composites with perfect bonding to the matrix.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


2011 ◽  
Vol 383-390 ◽  
pp. 3145-3150 ◽  
Author(s):  
Hong Zhen Cai ◽  
Wei Ming Yi ◽  
Xue Yuan Bai

The possibility of using coupling agents for crosslinking composites of wheat straw flour and polyethylene was investigated. The wheat straw flour /polyethylene composites were produced by means of extrusion in order to determine the influence of coupling agent on the mechanical properties of the composites.


2018 ◽  
Vol 56 (2A) ◽  
pp. 63-68
Author(s):  
Le Thi Bang

Bis-3,4- dimethyldibenzylidene sorbitol (DMDBS); bis-p-methylbenzylidene sorbitol (MDBS) and the mixture of DMDBS/MDBS (50/50) were studied through optical, thermal, mechanical properties and surface morphology. With the same amount of additive (DMDBS/MDBS mixture and DMDBS) in the material, the results are similar. On the other hand, using an additive mix reduces the cost of production due to MDBS. Furthermore, the additive mixture is used without producing odours. Therefore, the mixture of DMDBS/MDBS (50/50) is chosen.


2018 ◽  
Vol 930 ◽  
pp. 179-183
Author(s):  
Morgueto Natalia Oliveira ◽  
Nunes Edilene de Cássia Dutra ◽  
Nascimento Fernando Codelo ◽  
Saito Newton Haruo

The present work aimed at incorporating the rice hull ash (RHA) into a polypropylene polymer matrix. The methodology applied was the case study, whereby the rice hull, residue generated during the grain extraction, was used in the present study. The samples were prepared with the addition of a coupling agent (silane) with 10% by mass in relation to the filler, to improve the characteristics of the ash/ matrix interface. The tensile test results showed that the modulus of elasticity increased proportionally to the addition of the RHA contents, promoting an increase in the material stiffness. The micrographs showed excellent adhesion between the RHA particles and the polymer matrix. proving the coupling, because there was a good wettability array load due to the use of the coupling agent. The results show the feasibility of use of CCA in the composite with PP.


Sign in / Sign up

Export Citation Format

Share Document