scholarly journals Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ching-Feng Cheng ◽  
Terry B. J. Kuo ◽  
Wei-Nan Chen ◽  
Chao-Chieh Lin ◽  
Chih-Cheng Chen

Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function usingAsic3−/−mice.Asic3−/−mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore,Asic3−/−mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found inAsic3−/−mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jeffrey Hatcher ◽  
He Gu ◽  
Zixi (Jack) Cheng

Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2∙-), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions ofO2∙-may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function.


1995 ◽  
Vol 37 (9) ◽  
pp. 622-623
Author(s):  
V.K. Yeragani ◽  
E. Sobolewski ◽  
S. Vempati ◽  
S. Yeragani ◽  
J. Kay ◽  
...  

2015 ◽  
Vol 22 (8) ◽  
pp. 1080-1085 ◽  
Author(s):  
Sakari Simula ◽  
Tomi Laitinen ◽  
Tiina M Laitinen ◽  
Tuula Tarkiainen ◽  
Päivi Hartikainen ◽  
...  

Background: Fingolimod modulates sphingosine-1-phosphate receptors that are also found in cardiovascular tissue. Objective: To investigate the effects of fingolimod on cardiac autonomic regulation prospectively. Methods: Twenty-seven relapsing–remitting multiple sclerosis patients underwent 24-hour electrocardiogram recording before, at the first day of fingolimod treatment (1d) and after three months of continuous dosing (3mo). The time interval between two consecutive R-peaks (RR-interval) was measured. Cardiac autonomic regulation was assessed by the various parameters of heart rate variability. Parasympathetic stimulation prolongs the RR-interval and increases heart rate variability while the effects of sympathetic stimulation are mainly the opposite. The low frequency/high frequency ratio reflects sympathovagal balance. Results: From baseline to 1d, a prolongation of the RR-interval ( P<0.001), an increase in the values of various heart rate variability parameters ( P<0.05 to P<0.001) and a decrease in the low frequency/high frequency ratio ( P<0.05) were demonstrated. At 3mo, although the RR-interval remained longer ( P<0.01), the values of various heart rate variability parameters were lower ( P<0.01 to P<0.001) as compared to baseline. At 3mo, the low frequency/high frequency ratio ( P<0.05) was higher in men than in women although no such difference was found at baseline or at 1d. Conclusions: After an initial increase in parasympathetic regulation, continuous fingolimod dosing shifts cardiac autonomic regulation towards sympathetic predominance, especially in men. Careful follow-up of fingolimod-treated relapsing–remitting multiple sclerosis patients is warranted as sympathetic predominance associates generally with impaired outcome. ClinicalTrials.cov: NCT01704183


2021 ◽  
Author(s):  
Lysleine Alves Deus ◽  
Rodrigo Vanerson Passos Neves ◽  
Hugo de Luca Corrêa ◽  
Andrea Lucena Reis ◽  
Fernando Sousa Honorato ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Conrad Spellenberg ◽  
Peter Heusser ◽  
Arndt Büssing ◽  
Andreas Savelsbergh ◽  
Dirk Cysarz

Abstract Psychological stress may have harmful physiological effects and result in deteriorating health. Acute psychological stress acts also on cardiac autonomic regulation and may lead to nonstationarities in the interbeat interval series. We address the requirement of stationary RR interval series to calculate frequency domain parameters of heart rate variability (HRV) and use binary symbolic dynamics derived from RR interval differences to overcome this obstacle. 24 healthy subjects (12 female, 20–35 years) completed the following procedure: waiting period, Trier Social Stress Test to induce acute psychological stress, recovery period. An electrocardiogram was recorded throughout the procedure and HRV parameters were calculated for nine 5-min periods. Nonstationarities in RR interval series were present in all periods. During acute stress the average RR interval and SDNN decreased compared to rest before and after the stress test. Neither low frequency oscillations (LF), high frequency oscillations (HF) nor LF/HF could unambiguously reflect changes during acute stress in comparison to rest. Pattern categories derived from binary symbolic dynamics clearly identified acute stress and accompanying alterations of cardiac autonomic regulation. Methods based on RR interval differences like binary symbolic dynamics should be preferred to overcome issues related to nonstationarities.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Ana Pinto ◽  
Helen MacLaughlin ◽  
Robert Gray ◽  
Wendy Hall

AbstractThe risk of sudden cardiac death (SCD) is doubled when a patient with chronic kidney disease (CKD) stage 5 starts haemodialysis. Low heart rate variability (HRV) has been reported to be independently associated with increased risk of SCD and all cardiac death in haemodialysis patients. Long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA; 20:5n-3, EPA and 22:6n-3, DHA) may exert anti-arrhythmic effects on cardiac myocytes. Haemodialysis patients have lower serum LC n-3 PUFA levels compared to populations without CKD. Few studies have investigated the relationship between LC n-3 PUFA and HRV in patients with CKD. This study aimed to characterise the variability of LC n-3 PUFA status in patients who recently commenced haemodialysis, and to investigate relationships between LC n-3 PUFA status and HRV. A cross-sectional study was conducted in adults aged 40–80 years with CKD commencing haemodialysis (within 6–10 weeks) (NRES research ethics committee ref: 14/LO/0186). At 2 separate study days, pre-dialysis blood samples were taken to measure fatty acid composition by GC, and HRV monitors (Actiheart, CamNtech Ltd, UK) were fitted after dialysis had started to monitor parameters of cardiac autonomic function during dialysis, during the night, and for a total of 24 h. Forty-five patients (mean age 58 y, SD 9, 20 females/25 males) completed data collection at least once; 91% presented hypertension and 39% had type 2 diabetes. Sample mean omega-3 index (O3I; EPA + DHA as a % of fatty acids in erythrocyte membranes) was very low (3.45%, SD 1.25; median 3.26 %, IQR 1.32); only 2 individuals had O3I > 5%. Variability in erythrocyte EPA (median 0.66 %, IQR 0.42) and DHA (median 2.40 %, IQR 1.32) was limited. Most HRV parameters did not significantly correlate with O3I following adjustment (e.g. age, BMI, β-blockers). Plasma EPA significantly positively correlated with overall and longer phase components of HRV and significantly negatively correlated with beat-to-beat variability over 24 h after full adjustment for confounders. This suggests that although higher circulating EPA concentrations were associated with better cardiac responsivity to environmental stimulations over 24 h, they were also associated with poorer parasympathetic tone (the predominant influence on beat-to-beat HRV). No correlations were observed between plasma DHA and HRV. The divergent pattern of relationships between plasma EPA versus DHA and HRV raises the theory that patients commencing haemodialysis may have compromised conversion of EPA to DHA which may impair vagally-mediated regulation of cardiac autonomic function, a potential mechanism for high risk of SCD.


1964 ◽  
Vol 206 (4) ◽  
pp. 823-826 ◽  
Author(s):  
David R. Wekstein

Experiments were performed to determine the role of the sympathetic nervous system in the maturation of temperature regulation in the preweanling rat. Animals 6–16 days of age were placed in a 15 C air environment. The time required for their colonic temperatures to drop from 30 to 20 C was taken as an index of cooling rate. Reserpine, pentolinium, and nerve-growth-factor antiserum were used to evaluate autonomic function. None of these blocking agents influenced the rate of cooling of the 6-day-old animal. In the 16-day-old animal the same agents had a pronounced effect, such that control animals did not cool, while animals that had received reserpine cooled at a rate of 0.18 C/min, animals that had received the pentolinium cooled at a rate of 0.07 C/min, and animals that had received the antiserum for the first 5 days of life cooled at a rate of 0.15 C/min. This study indicates that the sympathetic nervous system is concerned with the development of homeothermy in the rat.


Sign in / Sign up

Export Citation Format

Share Document