scholarly journals Optimized Injection Molding of Unfilled and Glass Filled PA6 Gears

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

Shrinkage behavior is a crucial problem in manufacturing plastic molded gear. This is because it negatively affects the dimensional stability and accuracy of the involute profile, as well as the concentricity, roundness, tooth spacing uniformity, and size of the gear. By integrating the Taguchi robust design, Grey relational analysis, and principal component analysis, we investigated the dimensional stability related to the shrinkage of tooth thickness, addendum circle, and dedendum circle of molded gear via the optimization of processing parameters and glass fiber reinforcement. The results revealed that the optimal combination of the processing parameters of the molded gear to achieve minimum shrinkage is melt temperature of 260°C, packing pressure of 60%, packing time of 5 s, and cooling time of 30 s. The melt temperature showed the highest comparability sequence among the four key process parameters examined, followed by packing pressure, cooling time, and packing time. Meanwhile, the presence of glass fibers induced higher deviations of tooth thickness, addendum circle, and dedendum circle than those of the unfilled polyamide 6 gears.

2012 ◽  
Vol 488-489 ◽  
pp. 269-273 ◽  
Author(s):  
G.S. Dangayach ◽  
Deepak Kumar

In the present era, competition gets tougher; there is more pressure on manufacturing sectors to improve quality and customer satisfaction while decreasing cost and increasing productivity. These can be achieved by using modern quality management systems and process improvement techniques to reduce the process variability and driven waste within manufacturing process using effective application of statistical tools. Taguchi technique is well known technique to solve industrial problems. This technique is fast and can pinpoint the chief causes and variations. Plastic injection molding is suitable for mass production articles since complex geometries can be obtained in a single production step. The difficulty in setting optimal process conditions may cause defects in parts, such as shrinkage and warpage. In this paper, optimal injection molding conditions for minimum shrinkage were determined by the Taguchi design of experiment (DOE) approach. Polypropylene (PP) was injected in circular shaped specimens under various processing parameters: melt temperature, injection pressure, packing pressure and packing time. S/N ratios were utilized for determining the optimal set of parameters. According to the results, 2400 C of melt temperature, 75 MPa of injection pressure, 50 MPa of packing pressure and 15 sec. of packing time gave minimum shrinkage of 0.951% for PP. Statically the most significant parameter was melt temperature for the PP. Injection pressure had the least effect on the shrinkage. The defect rate was reduced from 14% to 3%.


2011 ◽  
Vol 189-193 ◽  
pp. 2477-2481 ◽  
Author(s):  
Dong Lei Liu ◽  
Chang Yu Shen ◽  
Chun Tai Liu ◽  
Yong Xin ◽  
Ling Sun

In order to further investigate the influence of mold temperature in rapid heat cycle molding on shrinkage of plastic past, a self-developed vehicle-used blue-tooth front shell high-gloss mold and an auxiliary device for controlling the mold temperature were employed in experiments. And the effect of the other parameters on shrinkage of part with fixed or changed mold temperature conditions was also studied. Results reveal that the shrinkage of RHCM part is reduced obviously compared with a conventional one, decreasing as quasi-linear with mold temperature increased gradually. At same mold temperature conditions, packing pressure, followed by packing time, is the most significant parameter on shrinkage of part, while cooling time has almost no impact on it. Melt temperature and injection pressure effecting on shrinkage of part exists a critical value, near the thermal deformation temperature of plastic. When mold temperature is set below this temperature, injection pressure has more significant than melt temperature, but it is the opposite. With being elevated gradually of mold temperature, shrinkage of part shows a slight decrease trend under same melt temperature and injecting pressure. While it fluctuates as a “V” shape with a narrow range under same packing pressure, packing time and cooling time presumed conditions, and reaches the minimum near the thermal deformation temperature of plastic.


2022 ◽  
Vol 58 (4) ◽  
pp. 102-113
Author(s):  
Sukran Katmer ◽  
Cetin Karatas

The shape memory effect, as the most important ability of shape memory polymers, is a working property and provides the design ability to shape memory polymer features. Shrinkage and warpage are important parameters to control the dimensional accuracy of permanent and temporary shapes of an injection moulded shape memory polyurethane (SMPU) part. In this study, the effects of injection moulding parameters on the shrinkage and warpage of the permanent shape of moulded SMPU parts were experimentally investigated. The parameters of injection pressure, melt temperature, mould temperature, packing pressure, packing time, and cooling time, were chosen as the injection moulding control factors. Taguchi�s L27 orthogonal array design table was used with six injection moulding parameters and their three levels. The results showed that the part has different shrinkage ratios in three main directions, namely, the flow direction, perpendicular to the flow direction, and the direction through the thickness. The results of the analysis of variance showed that the cooling time is the most influential parameter on both the shrinkage (except in thickness) and warpage. The shrinkage in the flow direction as well as in perpendicular to the flow direction decreased with increasing the cooling time. Warpage also decreased with increasing the cooling time. Injection pressure and melt temperature were found to be effective on shrinkage in thickness. Effects of mould temperature, packing pressure, and packing time were found to be limited. A statistically significant relationship has been noticed among shrinkage, warpage, and residual stresses during the study.


2011 ◽  
Vol 138-139 ◽  
pp. 941-945 ◽  
Author(s):  
Can Yang ◽  
Xiao Hong Yin ◽  
Lei Li ◽  
Jose M. Castro ◽  
Allen Y. Yi

In recent years, microinjection molding has been widely used for fabricating polymer components due to its cost effectiveness and mass-production capability. In this work, the fabrication process of a polymer micromixer was presented. The micromixer was designed in such a way that the fabrication process could benefit from the process capabilities of ultraprecision micromachining and microinjection molding. An amorphous polymer material polymethylmethacrylate was used to make the micromixers. Moreover, in order to investigate the effects of processing parameters on replication quality of the micromixer, four important factors in microinjection molding, namely the melt temperature, injection velocity, packing pressure and packing time were selected as variables. The experimental results showed that the melt temperature was the most important factor influencing the replication, followed by the injection velocity. However, the packing pressure and packing time had no obvious influence on the replication of the micromixer.


2012 ◽  
Vol 271-272 ◽  
pp. 1190-1194
Author(s):  
Hsueh Lin Wu ◽  
Ya Hui Wang

In this study, volumetric shrinkage at ejection of the chair base in the injection process, application of the 3D CAD software pro/e to design the shape of the product, and then combines moldflow simulation analysis and Taguchi method with L25 Orthogonal Array to determine the optimal injection molding parameters combination. In the Taguchi L25 experimental design, the six controlling factors used are melt temperature, mold temperature, injection time, packing time, packing pressure and cooling time, the result of experiment revealed that the optimum combination of parameters was the A2 (melting temperature 265°C), B3 (mold temperature 40°C), C2 (injection time 1.7sec), D4 (packing pressure 95%), E5 (packing time20sec), F5 (cooling time 20sec). The results show that the combination of Taguchi method and Moldflow can not only improve the molding process parameters effectively, but also optimize the quality of the products.


2018 ◽  
Vol 25 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Jixiang Zhang ◽  
Xiaoyi Yin ◽  
Fengzhi Liu ◽  
Pan Yang

Abstract Aiming at the problem that a thin-walled plastic part easily produces warpage, an orthogonal experimental method was used for multiparameter coupling analysis, with mold structure parameters and injection molding process parameters considered synthetically. The plastic part deformation under different experiment schemes was comparatively studied, and the key factors affecting the plastic part warpage were analyzed. Then the injection molding process was optimized. The results showed that the important order of the influence factors for the plastic part warpage was packing pressure, packing time, cooling plan, mold temperature, and melt temperature. Among them, packing pressure was the most significant factor. The optimal injection molding process schemes reducing the plastic part warpage were melt temperature (260°C), mold temperature (60°C), packing pressure (150 MPa), packing time (2 s), and cooling plan 3. In this situation, the forming plate flatness was better.


2013 ◽  
Vol 347-350 ◽  
pp. 1163-1167
Author(s):  
Ling Bai ◽  
Hai Ying Zhang ◽  
Wen Liu

Moldflow software was used to obtain the best gate location and count. Influence of injection molding processing parameters on sink marks of injection-piece was studied based on orthogonal test. The effects of different process parameters were analyzed and better process parameters were obtained. Results of research show that decreasing melt temperature, mold temperature, the increasing injection time and packing pressure can effectively reduce the sink marks index.


2012 ◽  
Vol 501 ◽  
pp. 269-273
Author(s):  
Peng Cheng Xie ◽  
Li Lei Miao ◽  
Pan Pan Zhang ◽  
Wei Min Yang

In this article, the structure of the differential pump is introduced, which is the core part of the differential injection system. The micro-gear with a shaft collar is simulated as it is an important micro-part and has great potential application in mechanical transmission. The Moldex 3D simulation software is used to investigate effects of processing parameters on the micro-gear such as melt temperature, mold temperature, injection time and packing time etc. By comparing the micro-gear's warpage under different processing parameters, it can be concluded that melt temperature has a greater impact on the molding quality than mold temperature. In addition, the effects of injection time and packing time on the micro-gear's molding quality are also investigated.


2014 ◽  
Vol 541-542 ◽  
pp. 359-362 ◽  
Author(s):  
Gyung Ju Kang

This Paper Presents the Optimization of Injection Molding Conditions to Minimize the Warpage and Volumetric Shrinkage Using Design of Experiments and Taguchi Optimization Method. Considering the Process Parameters such as Injection Time, Packing Pressure, Packing Pressure Time, and Cooling Time, a Series of Mold Analysis are Performed. Orthogonal Arrays of Taguchi, the Signal-to-Noise(S/N) and Analysis of Variance (ANOVA) are Utilized to Determine the Optimization Parameter Levels and to Find out Principal Processing Parameters on Warpage and Volumetric Shrinkage. from the Results it is Clear that Warpage and Volumetric Shrinkage are Reduced. also, the Dominant Parameters were Cooling Time and Packing Time for Warpage, on the other Hand, the most Important Factor for Shrinkage was Injection Time. from this, it can be Concluded that Taguchi Method is very Suitable to Solve the Warpage and Volumetric Shrinkage Problems in Injection Molding Parts.


2011 ◽  
Vol 189-193 ◽  
pp. 1675-1680
Author(s):  
Qing Qing Liu ◽  
Lin Hua ◽  
Wei Guo

The influence of process conditions on the formability of injection-molded PX0034 (9% talc-filled PP) automobile B column mounting trim applied as a model has been studied in current work. This study has been focused on the interactive influence of melt temperature and mold temperature, the interactive influences of injection time and packing time and the influences of packing pressure. Weighting the effect of optimization is by formability including the values of pressure at V/P switchover, volumetric shrinkage differential at ejection, and maximum warpage. Aforementioned values were obtained by numerical simulation of the whole molding process using commercial dedicated code Moldflow. Results indicate that the combination of mold temperature at 25 °C, melt temperature at 220 °C, injection time at 2.2 s, packing time at 16 s and packing pressure at 90% of the filling pressure is the optimal setting for formability of this trim. The simulation results obtained under the optimized parameters are that the pressure at V/P switchover is 27.29 Mpa, the shrinkage differential at ejection is 6.55 %, and maximum warpage is 3.072 mm. Good correlation is highlighted between the experiments and the simulations by comparing effects of the global optimization in formability, which verifies the validity of the optimal combination.


Sign in / Sign up

Export Citation Format

Share Document